首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Insulin treatment of mouse ATDC5 chondroprogenitors induces these cells to differentiate into mature chondrocytes. To identify novel factors that are involved in this process, we carried out mutagenesis of ATDC5 cells through retroviral insertion and isolated two mutant clones incapable of differentiation. Inverse PCR analysis of these clones revealed that the retroviral DNA was inserted into the promoter region of the Rab23 gene, resulting in increased Rab23 expression. To investigate whether an elevated level of Rab23 protein led to inhibition of chondrogenic differentiation, we characterized ATDC5 cells that either overexpress endogenous Rab23 or stably express ectopic Rab23. Our results revealed that up-regulation of Rab23 can indeed inhibit chondrogenic differentiation with a concomitant down-regulation of matrix genes such as type II collagen and aggrecan. In addition, stable small interfering RNA knockdown of Rab23 also resulted in inhibition of chondrogenic differentiation as well as down-regulation of Sox9, a master regulator of chondrogenesis. Interestingly, Sox9 expression has recently been linked to Gli1, and we found that Rab23 knockdown decreased Gli1 expression in chondrocytes. Because the phenotypes of Rab23 mutations in mice and humans include defects in cartilage and bone development, our study suggests that Rab23 is involved in the control of Sox9 expression via Gli1 protein.  相似文献   

3.
The aggregation of chondroprogenitor mesenchymal cells into precartilage condensation represents one of the earliest events in chondrogenesis. N-cadherin is a key cell adhesion molecule implicated in chondrogenic differentiation. Recently, ADAM10-mediated cleavage of N-cadherin has been reported to play an important role in cell adhesion, migration, development and signaling. However, the significance of N-cadherin cleavage in chondrocyte differentiation has not been determined. In the present study, we found that the protein turnover of N-cadherin is accelerated during the early phase of chondrogenic differentiation in ATDC5 cells. Therefore, we generated the subclones of ATDC5 cells overexpressing wild-type N-cadherin, and two types of subclones overexpressing a cleavage-defective N-cadherin mutant, and examined the response of these cells to insulin stimulation. The ATDC5 cells overexpressing cleavage-defective mutants severely prevented the formation of cartilage aggregates, proteoglycan production and the induction of chondrocyte marker gene expression, such as type II collagen, aggrecan and type X collagen. These results suggested that the cleavage of N-cadherin is essential for chondrocyte differentiation.  相似文献   

4.
5.
The skeleton is formed by two different mechanisms. In intramembranous ossification, osteoblasts form bone directly, whereas in endochondral ossification, chondrocytes develop a cartilage template, prior to osteoblast-mediated skeletogenesis. Lactoferrin is an iron-binding glycoprotein belonging to the transferrin family. It is known to promote the growth and differentiation of osteoblasts. In this study, we investigated the effects of bovine lactoferrin on the chondrogenic differentiation of ATDC5 chondroprogenitor cells. This mouse embryonic carcinoma-derived clonal cell line provides an in vitro model of chondrogenesis. Lactoferrin treatment of differentiating ATDC5 cells promoted cell proliferation in the initial stage of the differentiation process. However, lactoferrin treatment resulted in inhibition of hypertrophic differentiation, characterized by suppression of alkaline phosphatase activity, aggrecan synthesis and N-cadherin expression. This inhibitory effect was accompanied by sustained Sox9 expression, as well as increased Smad2/3 expression and phosphorylation, suggesting that lactoferrin regulates chondrogenic differentiation by up-regulating the Smad2/3-Sox9 signaling pathway.  相似文献   

6.
Close contact of mesenchymal cells in vivo and also in super dense micromass cultures in vitro results in cellular condensation and alteration of existing cellular signaling required for initiation and progression of chondrogenesis. To investigate chondrogenesis related changes in the activity of ubiquitous cell signaling mediated by mitogen-activated protein kinases (MAP kinase), we have compared the effect of cell seeding of pluripotent C3H10T1/2 mesenchymal cells as monolayers (non-chondrogenic culture) or high density micromass cultures (chondrogenic) on the regulation and phosphorylation state of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and also on regulation of ERK1/2 nuclear targets, namely, activation protein-1 (AP-1) and serum response factor (SRF). Increasing cell density resulted in reduced DNA binding as well as activity of AP-1. SRF activity, on the other hand, was up-regulated in confluent monolayer cultures but like AP-1 was inhibited in micromass cultures. Low levels of PD 98059 (5 microM), a specific inhibitor of ERK1/2, resulted in delayed induction of AP-1 and SRF activity whereas higher concentrations of this inhibitor (10-50 microM) conferred an opposite effect. Increasing concentrations of the PD 98059 inhibitor in long term monolayer or micromass cultures (2.5 day) resulted in differential regulation of c-Fos and c-Jun protein levels as well as total expression and phosphorylation levels of ERK1/2. PD 98059 treatment of C3H10T1/2 micromass cultures also resulted in up-regulation of type IIB collagen and Sox9 gene expression. While high expression of aggrecan and type IIB collagen genes were dependent on BMP-2 signaling, ERK inhibition of BMP-2 treated micromass cultures resulted in reduced activity of both genes. Our findings show that the activity of ERK1/2 in chondrogenic cultures of C3H10T1/2 cells is tightly controlled and can cross interact with other signaling activities mediated by BMP-2 to positively regulate chondrogensis.  相似文献   

7.
8.
Utilizing ATDC5 murine chondrogenic cells and human articular chondrocytes, this study sought to develop facile, reproducible three-dimensional models of cartilage generation with the application of tissue engineering strategies, involving biodegradable poly(glycolic acid) scaffolds and rotating wall bioreactors, and micromass pellet cultures. Chondrogenic differentiation, assessed by histology, immunohistochemistry, and gene expression analysis, in ATDC5 and articular chondrocyte pellets was evident by the presence of distinct chondrocytes, expressing Sox-9, aggrecan, and type II collagen, in lacunae embedded in a cartilaginous matrix of type II collagen and proteoglycans. Tissue engineered explants of ATDC5 cells were reminiscent of cartilaginous structures composed of numerous chondrocytes, staining for typical chondrocytic proteins, in lacunae embedded in a matrix of type II collagen and proteoglycans. In comparison, articular chondrocyte explants exhibited areas of Sox-9, aggrecan, and type II collagen-expressing cells growing on fleece, and discrete islands of chondrocytic cells embedded in a cartilaginous matrix.  相似文献   

9.
Endochondral ossification consists of successive steps of chondrocyte differentiation, including mesenchymal condensation, differentiation of chondrocytes, and hypertrophy followed by mineralization and ossification. Loss-of-function studies have revealed that abnormal growth plate cartilage of the Cdc42 mutant contributes to the defects in endochondral bone formation. Here, we have investigated the roles of Cdc42 in osteogenesis and signaling cascades governing Cdc42-mediated chondrogenic differentiation. Though deletion of Cdc42 in limb mesenchymal progenitors led to severe defects in endochondral ossification, either ablation of Cdc42 in limb preosteoblasts or knockdown of Cdc42 in vitro had no obvious effects on bone formation and osteoblast differentiation. However, in Cdc42 mutant limb buds, loss of Cdc42 in mesenchymal progenitors led to marked inactivation of p38 and Smad1/5, and in micromass cultures, Cdc42 lay on the upstream of p38 to activate Smad1/5 in bone morphogenetic protein-2-induced mesenchymal condensation. Finally, Cdc42 also lay on the upstream of protein kinase B to transactivate Sox9 and subsequently induced the expression of chondrocyte differential marker in transforming growth factor-β1-induced chondrogenesis. Taken together, by using biochemical and genetic approaches, we have demonstrated that Cdc42 is involved not in osteogenesis but in chondrogenesis in which the BMP2/Cdc42/Pak/p38/Smad signaling module promotes mesenchymal condensation and the TGF-β/Cdc42/Pak/Akt/Sox9 signaling module facilitates chondrogenic differentiation.  相似文献   

10.
Bone morphogenetic protein 4 (BMP4) induces, whereas epidermal growth factor (EGF) inhibits chondrogenesis. We hypothesize that BMP4 and EGF mediated intracellular signals are both coupled in the regulation of Meckel's cartilage development. Two chondrogenic experimental model systems were employed to test the hypothesis: (1) an ex vivo, serum-free, organ culture system for mouse embryonic mandibular processes, and (2) a micromass culture system for chicken embryonic mandibular processes. Chondrogenesis was assayed by alcian blue staining and expression of Sox9 and type II collagen. Exogenous EGF inhibited and BMP4 induced ectopic cartilage in a dose-dependent manner. When BMP4- and EGF-soaked beads were implanted in juxtaposition within embryonic day 10 mouse mandibular processes, the incidence and amount of ectopic cartilage, and Sox9 and type II collagen expression induced by BMP4, were significantly reduced as the concentration of EGF was increased. Similarly, in chicken serum-free micromass cultures, expression of a constitutively active BMP receptor type IB by replication competent avian retrovirus system promoted the rate and extent of chondrogenesis; however, exogenous EGF attenuated this effect. In micromass cultures, BMP signaling resulted in nuclear translocation and accumulation of the signaling molecule Smad1, whereas the addition of EGF inhibited this event. Our results suggest that BMP4 and EGF function antagonistically, yet are coupled in the regulation of initial chondrogenesis. Smad1 serves as a point of convergence for the integration of two different growth factor signaling pathways during chondrogenesis.  相似文献   

11.
12.
Cellular condensation of chondroprogenitors is a distinct cellular event in chondrogenesis. During this process, N-cadherin mediates cell-cell interactions responsible for the initial stage of cellular condensation and subsequently fibronectin contributes to cell-matrix interactions mediating a progression of chondrogenesis. We previously showed that chondrogenesis in mouse chondrogenic EC cells, ATDC5, was induced, at a high incidence in the presence of insulin, through formation of cellular condensation. In this study, we took advantage of the sequential progression of chondrogenesis in ATDC5 cells and evaluated, in vitro in these cells, the role of endogenous transforming growth factor (TGF)-beta in chondrogenesis. ATDC5 cells expressed TGF-beta2 mRNA at a cellular condensation stage. The treatment of undifferentiated ATDC5 cells with anti-TGF-beta32 neutralizing antibody inhibited the accumulation of Alcian blue stainable proteoglycan in a dose-dependent manner. Transfection of a dominant-negative mutant of mouse TGF-beta type II receptor to undifferentiated ATDC5 cells completely inhibited cellular condensation. Moreover, exogenously administered TGF-beta2 upregulated the expression of fibronectin and type II collagen (a phenotypic marker gene of chondrogenesis) mRNAs and downregulated that of N-cadherin mRNA in time- and dose-dependent manners. These results indicate that TGF-beta stimulates chondrogenesis via initiation of cellular condensation by transition from an initial N-cadherin-contributing stage to a fibronectin-contributing stage during processes of chondrogenesis in ATDC5 cells.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Differentiation of embryonic stem cells is of great interest to developmental biology and regenerative medicine. This study investigated the effects of cytochalasin D (CD) on the distribution of actin filaments in mouse embryoid body (EB)-derived cells. Furthermore, CD was applied to chondrogenic medium to examine its chondrogenic effect. CD at a concentration of 1 microg/ml disrupted stress fibers in EB-derived cells. Actin filaments in treated cells reorganized into a peripheral pattern, and type II collagen was detected by immunocytochemistry. The expression of type II collagen, Sox9, and at a later time point, aggrecan was up-regulated after CD treatment. In the CD-treated cells, Oct4 and Sox2, representing undifferentiation, were down-regulated as well as Sox1, AFP, and CTN-1, representing ectoderm, endoderm, and cardiogenesis, respectively. In conclusion, CD treatment enhances chondrogenesis of EB-derived cells. Moreover, it promotes a more complete stem cell differentiation toward chondrogenesis, when cultured in chondrogenic medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号