首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   

2.
Expression, purification, and functional testing of recombinant CYR61/CCN1   总被引:3,自引:0,他引:3  
The human cysteine-rich protein 61 (CYR61/CCN1) belongs to the CCN family of genes which plays an important role in cellular processes such as proliferation, migration, adhesion, and differentiation. These extracellular matrix signaling molecules consist of a modular structure and contain 38 conserved cysteine residues. Previously, we have shown that CYR61 is expressed in human osteoblasts and is regulated by bone-relevant growth factors. The protein also plays a role in angiogenesis. The open reading frame was cloned into a baculovirus expression vector and transfected into SF-21 insect cells. Recombinant protein was expressed as a fusion protein with the Fc-domain of human IgG and purified using affinity chromatography on protein G-Sepharose columns. The chorioallantoic membrane assay verified that blood vessel formation was stimulated by rCYR61. Additionally, human primary mesenchymal stem cells, osteoblasts, and endothelial cells responded to CYR61 treatment by a markedly stimulated proliferation. rCYR61-Fc represents a tool to elucidate its role in cells of the bone microenvironment.  相似文献   

3.
This year we’re coming upon the tenth anniversary of our biannual International Workshop on the CCN family of genes. It was during our very first meeting that the International CCN Society was conceived. This editorial provides us with the opportunity to briefly review how the need for a CCN meeting emerged and evolved, following the discovery of CTGF, CYR61, and NOV, the three founding members of the CCN family of proteins that in humans are known as as CCN1 (CTGF), CCN2 (CYR61), CCN3(NOV), CCN4(WISP1), CCN5 (WISP2) and CCN6 (WISP3).  相似文献   

4.

Background:  

CCN-proteins are known to be involved in development, homeostasis and repair of mesenchymal tissues. Since these processes implicate recruitment of cells with the potential to be committed to various phenotypes, we studied the effect of CYR61/CCN1 and WISP3/CCN6 on migration of human bone marrow derived mesenchymal stroma cells (MSCs) in comparison to in vitro osteogenic differentiated MSCs using a modified Boyden chamber assay.  相似文献   

5.
CCN4/Wnt-induced secreted protein 1 (WISP1) is one of the CCN (CTGF/Cyr61/Nov) family proteins. CCN members have typical structures composed of four conserved cysteine-rich modules and their variants lacking certain modules, generated by alternative splicing or gene mutations, have been described in various pathological conditions. Several previous reports described a CCN4/WISP1 variant (WISP1v) lacking the second module in a few malignancies, but no information concerning the production of WISP1 variants in normal tissue is currently available. The expression of CCN4/WISP1 mRNA and its variants were analyzed in a human chondrosarcoma-derived chondrocytic cell line, HCS-2/8, and primary rabbit growth cartilage (RGC) chondrocytes. First, we found WISP1v and a novel variant of WISP1 (WISP1vx) to be expressed in HCS-2/8, as well as full-length WISP1 mRNA. This new variant was lacking the coding regions for the second and third modules and a small part of the first module. To monitor the expression of CCN4/WISP1 mRNA along chondrocyte differentiation, RGC cells were cultured and sampled until they were mineralized. As a result, we identified a WISP1v ortholog in normal RGC cells. Interestingly, the WISP1v mRNA level increased dramatically along with terminal differentiation. Furthermore, overexpression of WISP1v provoked expression of an alkaline phosphatase gene that is a marker of terminal differentiation in HCS-2/8 cells. These findings indicate that WISP1v thus plays a critical role in chondrocyte differentiation toward endochondral ossification, whereas HCS-2/8-specific WISP1vx may be associated with the transformed phenotypes of chondrosarcomas.  相似文献   

6.
Cysteine-rich protein 61 (CCN1/CYR61) is a CCN (CYR61, CTGF (connective tissue growth factor), and NOV (Nephroblastoma overexpressed gene)) family matricellular protein comprising six secreted CCN proteins in mammals. CCN1/CYR61 expression is associated with inflammation and injury repair. Recent studies show that CCN1/CYR61 limits fibrosis in models of cutaneous wound healing by inducing cellular senescence in myofibroblasts of the granulation tissue which thereby transforms into an extracellular matrix-degrading phenotype. We here investigate CCN1/CYR61 expression in primary profibrogenic liver cells (i.e., hepatic stellate cells and periportal myofibroblasts) and found an increase of CCN1/CYR61 expression during early activation of hepatic stellate cells that declines in fully transdifferentiated myofibroblasts. By contrast, CCN1/CYR61 levels found in primary parenchymal liver cells (i.e., hepatocytes) were relatively low compared to the levels exhibited in hepatic stellate cells and portal myofibroblasts. In models of ongoing liver fibrogenesis, elevated levels of CCN1/CYR61 were particularly noticed during early periods of insult, while expression declined during prolonged phases of fibrogenesis. We generated an adenovirus type 5 encoding CCN1/CYR61 (i.e., Ad5-CMV-CCN1/CYR61) and overexpressed CCN1/CYR61 in primary portal myofibroblasts. Interestingly, overexpressed CCN1/CYR61 significantly inhibited production of collagen type I at both mRNA and protein levels as evidenced by quantitative real-time polymerase chain reaction, Western blot and immunocytochemistry. CCN1/CYR61 further induces production of reactive oxygen species (ROS) leading to dose-dependent cellular senescence and apoptosis. Additionally, we demonstrate that CCN1/CYR61 attenuates TGF-β signaling by scavenging TGF-β thereby mitigating in vivo liver fibrogenesis in a bile duct ligation model. Conclusion: In line with dermal fibrosis and scar formation, CCN1/CYR61 is involved in liver injury repair and tissue remodeling. CCN1/CYR61 gene transfer into extracellular matrix-producing liver cells is therefore potentially beneficial in liver fibrotic therapy.  相似文献   

7.
The tumor microenvironment has a powerful effect on the development and progression of human breast cancer, which may be used therapeutically. Despite efforts to understand the complex role of the tumor microenvironment in breast cancer development, the specific players and their contributions to tumorigenesis need further investigation. The CCN family of matricellular proteins comprises six members (CCN1–6; CYR61, CTGF, NOV, WISP1–3) with central roles in development, inflammation, and tissue repair. CCN proteins also exert functions during pathological processes including fibrosis and cancer by regulating extracellular signals in the cellular environment. Studies have demonstrated that all six CCN proteins exert functions in breast tumorigenesis. Although CCN proteins share a multimodular structure in which most cysteine residues are conserved within structural motifs, they may have opposing functions in breast cancer progression. A better understanding of the functions of each CCN member will assist in the development of specific therapeutic approaches for breast cancer.  相似文献   

8.
9.
To obtain sufficient numbers of cells for tissue engineering applications, human bone marrow-derived mesenchymal stem cells (hBM-MSC) are commonly cultured as monolayers in incubators containing room air. In this study, we investigated whether three-dimensional (3D) culture conditions and incubator gas concentrations more similar to those observed in vivo impacted on cell expansion, differentiation capability, or phenotype of hBM-MSC. We found that 3D culture alone increased the expression of some molecules involved in osteogenic and adipogenic differentiation. In contrast, 3D culture did not induce chondrogenic differentiation, but enhanced the response to the chondrogenic differentiation medium. Changing the oxygen concentration to 6% and the carbon dioxide concentration to 7.5% did not impact on the results of any of our assays, showing that the hyperoxia of room air is not detrimental to hBM-MSC proliferation, differentiation, or phenotype.  相似文献   

10.
CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells.  相似文献   

11.
12.
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.  相似文献   

13.
CYR61 (CCN1) is an extracellular matrix-associated protein of the CCN family, which also includes CTGF (CCN2), NOV (CCN3), WISP-1 (CCN4), WISP-2 (CCN5), and WISP-3 (CCN6). Purified CYR61 induces neovascularization in corneal implants, and Cyr61-null mice suffer embryonic death due to vascular defects, thus establishing that CYR61 is an important regulator of angiogenesis. Aberrant expression of Cyr61 is associated with breast cancer, wound healing, and vascular diseases such as atherosclerosis and restenosis. In culture, CYR61 functions through integrin-mediated pathways to promote cell adhesion, migration, and proliferation. Here we show that CYR61 can also promote cell survival and tubule formation in human umbilical vein endothelial cells. Furthermore, we have dissected the integrin receptor requirements of CYR61 with respect to its pro-angiogenic activities. Thus, CYR61-induced cell adhesion and tubule formation occur through interaction with integrin alpha(6)beta(1) in early passage endothelial cells in which integrins have not been activated. By contrast, in endothelial cells in which integrins are activated by phorbol ester or vascular endothelial growth factor, CYR61-promoted cell adhesion, migration, survival, growth factor-induced mitogenesis, and endothelial tubule formation are all mediated through integrin alpha(v)beta(3). These findings indicate that CYR61 is an activation-dependent ligand of integrin alpha(v)beta(3) and an activation-independent ligand of integrin alpha(6)beta(1) and that these integrins differentially mediate the pro-angiogenic activities of CYR61. These findings help to define the mechanisms by which CYR61 acts as an angiogenic regulator, provide a molecular interpretation for the loss of vascular integrity and increased apoptosis of vascular cells in Cyr61-null mice, and underscore the importance of CYR61 in the development and homeostasis of the vascular system.  相似文献   

14.
In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 μm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human.Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.  相似文献   

15.
Here, we enriched a human cell population from adipose tissue that exhibited both mesenchymal plasticity, self-renewal capacity, and a cell-surface marker profile indistinguishable from that of bone marrow-derived mesenchymal stem cells. In addition to adipogenic and osteogenic differentiation, these adipose-derived stem cells displayed skeletal myogenic potential when co-cultured with mouse skeletal myocytes in reduced serum conditions. Physical incorporation of stem cells into multinucleated skeletal myotubes was determined by genetic lineage tracing, whereas human-specific antibody staining was employed to demonstrate functional contribution of the stem cells to a myogenic lineage. To investigate the effects of hypoxia, cells were maintained and differentiated at 2% O(2). In contrast with reports on bone marrow-derived stem cells, both osteogenic and adipogenic differentiation were significantly attenuated. In summary, the relative accessibility of adipose-derived mesenchymal stem cells from human donors provides opportunity for molecular investigation of mechanistic dysfunction in disease settings and may introduce new prospects for cell-based therapy.  相似文献   

16.
Cysteine-rich 61 (CYR61), a member of the connective tissue factor CCN (Cyr61, CTGF, Nov) family, facilitates angiogenesis by interacting with integrins. Recent observations have indicated that CYR61 also rescues cells from anti-cancer drug-mediated apoptosis but the detailed mechanism underlying the role of CYR61 during apoptosis has not been identified. To better understand the role of CYR61 during cisplatin-induced apoptosis in tumor cells, we overexpressed or inhibited CYR61 expression in human cervical cancer cells (HeLa cells) and measured cisplatin-mediated apoptosis. The results from these experiments clearly demonstrate that CYR61 prevents cisplatin-induced apoptosis by inhibiting caspase-3 activity in HeLa cells. Therefore, CYR61 may be a useful therapeutic target for cisplatin-resistant tumors. An erratum to this article can be found at  相似文献   

17.
18.
Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.  相似文献   

19.
Bone marrow-derived mesenchymal stem cells consist of a developmentally heterogeneous population of cells obtained from colony forming progenitors. As these colonies express the alpha-1 integrin (CD49a), here we single-cell FACS sorted CD49a+ cells from bone marrow in order to create clones and then compared their colony forming efficiency and multilineage differentiation capacity to the unsorted cells. Following selection, 40% of the sorted CD49a+ cells formed colonies, whereas parental cells failed to form colonies following limited dilution plating at 1 cell/well. Following ex vivo expansion, clones shared a similar morphology to the parental cell line, and also demonstrated enhanced proliferation. Further analysis by flow cytometry using a panel of multilineage markers demonstrated that the CD49a+ clones had enhanced expression of CD90 and CD105 compared to unsorted cells. Culturing cells in adipogenic, osteogenic or chondrogenic medium for 7, 10 and 15 days respectively and then analysing them by quantitative PCR demonstrated that CD49a+ clones readily underwent multlineage differentiation into fat, bone and cartilage compared to unsorted cells. These results thus support the use of CD49a selection for the enrichment of mesenchymal stem cells, and describes a strategy for selecting the most multipotential cells from a heterogeneous pool of bone marrow mononuclear stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号