首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates Wnt-7a/b-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of b-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with b-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of b-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of b-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.  相似文献   

2.
Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinate complex biological processes during differentiation and tissue repair. Here we describe the role of CTGF in integrin-mediated adhesive signaling and the production of extracellular matrix components in human mesangial cells. The addition of CTGF to primary mesangial cells induced fibronectin production, cell migration, and cytoskeletal rearrangement. These functional responses were associated with recruitment of Src and phosphorylation of p42/44 MAPK and protein kinase B. The inhibition of CTGF-induced p42/44 MAPK or phosphatidylinositol 3-kinase (PI3K)/protein kinase B pathway activities abrogated the induction of fibronectin expression. In addition, anti-beta(3) integrin antibodies attenuated the activation of both the p42/44 MAPK and protein kinase B and the increase in fibronectin levels. CTGF also induced mesangial cell migration via a beta(3) integrin-dependent mechanism that was similarly sensitive to the inhibition of the p42/44 MAPK and PI3K pathways, and it promoted the adhesion of the mesangial cells to type I collagen via up-regulation of alpha(1) integrin. Transient actin cytoskeletal disassembly was observed following treatment with the ligand over the course of a 24-h period. CTGF induced the loss of focal adhesions from the mesangial cell as evidenced by the loss of punctate vinculin. However, these processes are p42/44 MAPK and PI3K pathway-independent. Our data support the hypothesis that CTGF mediates a number of its biological effects by the induction of signaling processes via beta(3) integrin. However, others such as actin cytoskeleton disassembly are modulated in a beta(3) integrin/MAPK/PI3K-independent manner, indicating that CTGF is a complex pleiotropic factor with the potential to amplify primary pathophysiological responses.  相似文献   

3.
The presence of an appropriate number of viable cells is prerequisite for successive differentiation during chondrogenesis. Chondrogenic differentiation has been reported to be influenced by mechanical stimuli. This research aimed to study the effects of cyclic compressive stress on cell viability of rat bone marrow‐derived MSCs (BMSCs) during chondrogenesis as well as its underlying mechanisms. The results showed that dynamic compression increased cell quantity and viability remarkably in the early stage of chondrogenesis, during which the expression of Ihh, Cyclin D1, CDK4, and Col2α1 were enhanced significantly. Possible signal pathways implicated in the process were explored in our study. MEK/ERK and p38 MAPK were not found to function in this process while BMP signaling seemed to play an important role in the mechanotransduction during chondrogenic proliferation. In conclusion, dynamic compressive stress could enhance cell viability during chondrogenesis, which might be achieved by activating BMP signaling. J. Cell. Physiol. 228: 1935–1942, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The majority of bones comprising the adult vertebrate skeleton are generated from hyaline cartilage templates that form during embryonic development. A process known as endochondral ossification is responsible for the conversion of these transient cartilage anlagen into mature, calcified bone. Endochondral ossification is a highly regulated, multistep cell specification program involving the initial differentiation of prechondrogenic mesenchymal cells into hyaline chondrocytes, terminal differentiation of hyaline chondrocytes into hypertrophic chondrocytes, and finally, apoptosis of hypertrophic chondrocytes followed by bone matrix deposition. Recently, extensive research has been carried out describing roles for the three major mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-jun N-terminal kinase (JNK) pathways, in the successive stages of chondrogenic differentiation. In this review, we survey this research examining the involvement of ERK1/2, p38, and JNK pathway signaling in all aspects of the chondrogenic differentiation program from embryonic through postnatal stages of development. In addition, we summarize evidence from in vitro studies examining MAPK function in immortalized chondrogenic cell lines and adult mesenchymal stem cells. We also provide suggestions for future studies that may help ameliorate existing confusion concerning the specific roles of MAPK signaling at different stages of chondrogenesis.  相似文献   

5.
6.
In this study we investigated whether signalling by TGF-beta3 and Wnt-5a cross-talk during chondrogenic differentiation of chick wing mesenchyme. Using differential display polymerase chain reaction screening, we found the expression of Wnt-5a to be significantly increased during transforming growth factor-beta3 (TGF-beta3)-induced precartilage condensation in mesenchyme micromass cultures. Transfection of cells with a Wnt-5a expression construct promoted precartilage condensation and chondrogenesis in micromass cultures, similar to that observed when chondrogenic-competent cells were exposed to TGF-beta3. Overexpression of Wnt-5a or treatment with TGF-beta3 stimulated the activation of protein kinase C-alpha (PKC-alpha) and p38 mitogen-activated protein kinase (MAPK), both positive regulators of chondrogenic differentiation. Inactivation of PKC-alpha and p38 MAPK by specific inhibitors abrogated chondrogenesis stimulated by both TGF-beta3 and Wnt-5a. Similarly, partial reduction in TGF-beta3-induced Wnt-5a expression by small interfering RNA resulted in decreased activities of PKC-alpha and p38 MAPK, and abolished the chondro-stimulatory effect of TGF-beta3. Collectively, these findings indicate that Wnt-5a, a non-canonical Wnt, can mediate the chondro-stimulatory effect of TGF-beta3 through upregulation of PKC-alpha and p38MAPK signaling.  相似文献   

7.
8.
The multilineage differentiation potential of adult tissue-derived mesenchymal progenitor cells (MPCs), such as those from bone marrow and trabecular bone, makes them a useful model to investigate mechanisms regulating tissue development and regeneration, such as cartilage. Treatment with transforming growth factor-beta (TGF-beta) superfamily members is a key requirement for the in vitro chondrogenic differentiation of MPCs. Intracellular signaling cascades, particularly those involving the mitogen-activated protein (MAP) kinases, p38, ERK-1, and JNK, have been shown to be activated by TGF-betas in promoting cartilage-specific gene expression. MPC chondrogenesis in vitro also requires high cell seeding density, reminiscent of the cellular condensation requirements for embryonic mesenchymal chondrogenesis, suggesting common chondro-regulatory mechanisms. Prompted by recent findings of the crucial role of the cell adhesion protein, N-cadherin, and Wnt signaling in condensation and chondrogenesis, we have examined here their involvement, as well as MAP kinase signaling, in TGF-beta1-induced chondrogenesis of trabecular bone-derived MPCs. Our results showed that TGF-beta1 treatment initiates and maintains chondrogenesis of MPCs through the differential chondro-stimulatory activities of p38, ERK-1, and to a lesser extent, JNK. This regulation of MPC chondrogenic differentiation by the MAP kinases involves the modulation of N-cadherin expression levels, thereby likely controlling condensation-like cell-cell interaction and progression to chondrogenic differentiation, by the sequential up-regulation and progressive down-regulation of N-cadherin. TGF-beta1-mediated MAP kinase activation also controls WNT-7A gene expression and Wnt-mediated signaling through the intracellular beta-catenin-TCF pathway, which likely regulates N-cadherin expression and subsequent N-cadherin-mediated cell-adhesion complexes during the early steps of MPC chondrogenesis.  相似文献   

9.
Adhesive signaling plays a key role in cellular differentiation, including in chondrogenesis. Herein, we probe the contribution to early chondrogenesis of two key modulators of adhesion, namely focal adhesion kinase (FAK)/Src and CCN2 (connective tissue growth factor, CTGF). We use the micromass model of chondrogenesis to show that FAK/Src signaling, which mediates cell/matrix attachment, suppresses early chondrogenesis, including the induction of Ccn2, Agc, and Sox6. The FAK/Src inhibitor PP2 elevates Ccn2, Agc, and Sox6 expression in wild-type mesenchymal cells in micromass culture, but not in cells lacking CCN2. Our results suggest a reduction in FAK/Src signaling is a critical feature permitting chondrogenic differentiation and that CCN2 operates downstream of this loss to promote chondrogenesis.  相似文献   

10.
11.
The angiogenic inducers cysteine-rich angiogenic protein 61 (Cyr61) and connective tissue growth factor (CTGF) are structurally related, extracellular matrix-associated heparin-binding proteins. Both can stimulate chemotaxis and promote proliferation in endothelial cells and fibroblasts in culture and induce neovascularization in vivo. Encoded by inducible immediate early genes, Cyr61 and CTGF are synthesized upon growth factor stimulation in cultured fibroblasts and during cutaneous wound healing in dermal fibroblasts. Recently, we have shown that adhesion of primary human fibroblasts to immobilized Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs) (Chen, N., Chen, C.-C., and Lau, L.F. (2000) J. Biol. Chem. 275, 24953-24961), providing the first demonstration of an absolute requirement for HSPGs in integrin-mediated cell attachment. We show in this study that CTGF also mediates fibroblast adhesion through the same mechanism and demonstrate that fibroblasts adhesion to immobilized Cyr61 or CTGF induces distinct adhesive signaling responses consistent with their biological activities. Compared with fibroblast adhesion to fibronectin, laminin, or type I collagen, cell adhesion to Cyr61 or CTGF induces 1) more extensive and prolonged formation of filopodia and lamellipodia, concomitant with formation of integrin alpha(6)beta(1)-containing focal complexes localized at leading edges of pseudopods; 2) activation of intracellular signaling molecules including focal adhesion kinase, paxillin, and Rac with similar rapid kinetics; 3) sustained activation of p42/p44 MAPKs lasting for at least 9 h; and 4) prolonged gene expression changes including up-regulation of MMP-1 (collagenase-1) and MMP-3 (stromelysin-1) mRNAs and proteins sustained for at least 24 h. Together, these results establish Cyr61 and CTGF as bona fide adhesive substrates with specific signaling capabilities, provide a molecular basis for their activities in fibroblasts through integrin alpha(6)beta(1) and HSPG-mediated signaling during attachment and indicate that these proteins may function in matrix remodeling through the activation of metalloproteinases during angiogenesis and wound healing.  相似文献   

12.
CTGF/Hcs24 is a multifunctional growth factor that potentiates the growth and differentiation of various cells. Our previous study revealed that the 3'-UTR of mammalian CTGF/Hcs24 mRNA contains a small segment that represses the gene expression in cis fashion. In this study, we isolated and characterized a chicken CTGF/Hcs24 cDNA clone. Chicken ctgf/hcs24 mRNA showed highly conserved homology in the ORF to that of mammalian species, whereas the homology in the 3'-UTR was relatively low. Northern blotting analysis revealed that chicken ctgf/hcs24 mRNA was expressed most strongly in cartilage, and also in brain, lung, heart, but faintly in liver. Thereafter we analyzed the functional potential of the 3'-UTR of ctgf/hcs24 cDNA to regulate its gene expression by reporter gene assay, and found that it repressed gene expression in cis fashion, specifically in avian cells, but not in mammalian cells. Conversely, the mammalian 3'-UTR showed less repressive activity in avian cells than in mammalian cells. Deletion analysis showed that a segment near the polyadenyl tail of the 3'-UTR of chicken ctgf/hcs24 played an important functional role, unlike in the mammalian species. Thus, we uncovered a novel mode of functional conservation of the ctgf/hcs24 3'-UTR among vertebrate species mediated by different factors.  相似文献   

13.
14.
15.
Cell–cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell–cell interactions between muscle precursors. Cdo activates p38MAPK via interaction with two scaffold proteins JLP and Bnip-2 to promote myogenesis. p38MAPK and Akt signaling are required for myogenic differentiation and activation of both signaling pathways is crucial for efficient myogenic differentiation. We report here that APPL1, an interacting partner of Akt, forms complexes with Cdo and Boc in differentiating myoblasts. Both Cdo and APPL1 are required for efficient Akt activation during myoblast differentiation. The defective differentiation of Cdo-depleted cells is fully rescued by overexpression of a constitutively active form of Akt, whereas overexpression of APPL1 fails to do so. Taken together, Cdo activates Akt through association with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via association with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt.  相似文献   

16.
BACKGROUND: The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. RESULTS: Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry.RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARgamma, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. CONCLUSION: The decrease in CYR61/CCN1 expression during the differentiation pathways of mesenchymal stem cells into osteoblasts, adipocytes and chondrocytes suggests a specific role of CYR61/CCN1 for maintenance of the stem cell phenotype. The differential expression of CTGF/CCN2, WISP2/CCN5, WISP3/CCN6 and mainly CYR61/CCN1 indicates, that these members of the CCN-family might be important regulators for bone marrow-derived mesenchymal stem cells in the regulation of proliferation and initiation of specific differentiation pathways.  相似文献   

17.
18.
Connective tissue growth factor (CTGF, CCN2) is a secreted protein with major roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. It is a member of the CCN family of immediate-early gene products which are characterised by four discrete protein modules in which reside growth factor binding domains, functional motifs for integrin recognition, heparin and proteoglycan binding, and dimerization motifs. A primary function of CTGF is to modulate and coordinate signaling responses involving cell surface proteoglycans, key components of the extracellular matrix, and growth factors. Integration of these molecular cues regulates growth factor and receptor interactions, cell motility and mesenchymal cell activation and differentiation in tissue remodelling. Abnormal amplification of CTGF dependent signals results in a failure to terminate tissue repair, leading pathological scarring in conditions such as fibrosis and cancer.  相似文献   

19.
20.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号