首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Chitin and chitosan are novel biomaterials. The novel chitosan/gelatin membranes were prepared using the suspension of chitosan hydrogel mixed with gelatin. The prepared chitosan/gelatin membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical, swelling, and thermal studies. The morphology of these chitosan/gelatin membranes was found to be very smooth and homogeneous. The XRD studies showed that the chitosan/gelatin membranes have good compatibility and interaction between the chitosan and gelatin. The stress and elongation of chitosan/gelatin membranes on wet condition showed excellent when the mixture ratio of gelatin was 0.50. The prepared chitosan/gelatin membranes showed good swelling, mechanical and thermal properties. Cell adhesion studies were also carried out using human MG-63 osteoblast-like cells. The cells incubated with chitosan/gelatin membranes for 24 h were capable of forming cell adhesion. Thus the prepared chitosan/gelatin membranes are bioactive and are suitable for cell adhesion suggesting that these membranes can be used for tissue-engineering applications. Therefore, these novel chitosan/gelatin membranes are useful for biomedical applications.  相似文献   

2.
The paper deals with the synthesis of organic–inorganic hybrid membranes, Hy, obtained by simultaneous grafting and crosslinking of chitosan with epoxy-terminated polydimethylsiloxane and γ-glycidoxypropyltrimethoxysilane. Porous membranes, HyP, were also obtained by acid decomposition, at different temperatures (25 and 50 °C), of calcium carbonate porogenic agent trapped inside the material. As proved by electron and atomic force microscopy, the non-porous membrane is a phase segregated material with spherical domains (10–40 μm) of silica core covered by hydrophobic siloxane in a hydrophilic chitosan matrix. The porous membranes showed different morphologies with irregular circular pores of 10–30 μm diameters for the membranes obtained at lower temperature, while the membranes prepared at 50 °C tend to adopt a plan-parallel porosity. The water contact angles of hybrid membranes (78°) and pure chitosan membranes (72°) indicated a lower hydrophilic character of modified chitosan. As a result of the crosslinking and of increased hydrophobicity, the hybrid membranes were characterized by a smaller water swelling degree (about 30%) as compared to pure chitosan membrane (700%). However, the presence of the pores in HyP membranes determined an increase of the water adsorption (maximum swelling degree, about 100%). The hybrid membranes possess a slightly higher thermal stability as compared to chitosan (first initial decomposition temperature, 147 and 175 °C for chitosan and hybrid membranes, respectively), but a lower one as compared to pure polydimethylsiloxane. The high storage modulus of chitosan (about 5.1 × 109 Pa at 20 °C) is decreased by about one order of magnitude by the introduction of the highly flexible polysiloxane and the hybrid membranes are more flexible.  相似文献   

3.
To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.  相似文献   

4.
In this study, natural biodegradable polysaccharide, chitosan, and synthetic biodegradable polymer, poly(?-caprolactone) (PCL) were used to prepare 3D, hybrid polymeric tissue scaffolds (PCL/chitosan blend and PCL/chitosan/PCL layer by layer scaffolds) by using the electrospinning technique. The hybrid scaffolds were developed through HA addition to accelerate osteoblast cell growth. Characteristic examinations of the scaffolds were performed by micrometer, SEM, contact angle measurement system, ATR-FTIR, tensile machine and swelling experiments. The thickness of all electrospun scaffolds was determined in the range of 0.010 ± 0.001-0.012 ± 0.002 mm. In order to optimize electrospinning processes, suitable bead-free and uniform scaffolds were selected by using SEM images. Blending of PCL with chitosan resulted in better hydrophilicity for the PCL/chitosan scaffolds. The characteristic peaks of PCL and chitosan in the blend and layer by layer nanofibers were observed. The PCL/chitosan/PCL layer by layer structure had higher elastic modulus and tensile strength values than both individual PCL and chitosan structures. The layer by layer scaffolds exhibited the PBS absorption values of 184.2; 197.2% which were higher than those of PCL scaffolds but lower than those of PCL/chitosan blend scaffolds. SaOs-2 osteosarcoma cell culture studies showed that the highest ALP activities belonged to novel PCL/chitosan/PCL layer by layer scaffolds meaning better cell differentiation on the surfaces.  相似文献   

5.
The chitin/gelatin composite membranes were prepared by mixing of chitin hydrogel with gelatin. The prepared composite membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical, swelling, enzymatic degradation and thermal studies. The XRD pattern of the chitin/gelatin composite membranes showed almost the same pattern as α-chitin. The bioactivity studies of these chitin/gelatin membranes were carried out with the simulated body fluid solution (SBF) for 7, 14 and 21 days followed by the characterization with the scanning electron microscopy (SEM) and Energy Dispersive Spectrum (EDS) studies. The SEM and EDS studies confirmed the formation of calcium phosphate layer on the surface of chitin/gelatin membranes. Biocompatibility of the chitin/gelatin membrane was assessed using human MG-63 osteoblast-like cells. After 48 h of incubation, it was found that the cells had attached and completely covered the membrane surface. Thus, the prepared chitin/gelatin membranes are bioactive and are suitable for cell adhesion suggesting that these membranes can be used for tissue-engineering applications.  相似文献   

6.
Novel chitosan/ZnO nanoparticle (CS/nano-ZnO) composite membranes were prepared via the method of sol-cast transformation and studied by UV-vis absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray fluorescence spectrometry (EDX). The characterization revealed that ZnO nanoparticles dispersed homogeneously within the chitosan matrix. The mechanical and antibacterial properties of the product were investigated. The results showed that the ZnO content had an effect on the mechanical properties of CS/nano-ZnO composite membranes, and that the antibacterial activities of CS membranes for Bacillus subtilis, Escherichia coli, and Staphylococcus aureus were enhanced by the incorporation of ZnO. Further, CS/nano-ZnO composite membranes with 6-10 wt % ZnO exhibited high antibacterial activities.  相似文献   

7.
The three new dual-layer matrices (polyacrylonitrile (PAN) membranes coated with physically bound chitosan (CHI)—PANCHI-A and chemically bound chitosan—PANCHI-B and PANCHI-C) for immobilization of acetylcholinesterase (AChE) were obtained. The chemical-modified PAN membrane (PAN-NaOH + ethylenediamine (EDA)) was used as a base for the prepared dual-layer membranes. For chemical chitosan bound membrane, chitosan was tethered onto the membrane surface to form a dual-layer biomimetic membrane in the presence of glutaraldehyde (GA). The basic characteristics (amount of amino groups, hydrophilicity and transport characteristics) of the chitosan-modified membranes were investigated. The SEM analyses were shown essential morphology change in the different chitosan membranes.The relative activities and Vmax of the covalently immobilized enzyme on PANCHI-B and PANCHI-C membranes were higher than that on PANCHI-A membrane and chemical-modified membrane with NaOH + EDA. Km values for the different modified membranes are lower for the chitosan-treated membranes. The pH and temperature optimum of immobilized enzyme were determined. The bound enzymes on PANCHI-B and PANCHI-C have higher thermal and storage stability in comparison with AChE on PANCHI-A membrane and free enzyme.  相似文献   

8.
Chitosan/carboxymethyl cashew gum microspheres (CH/CMCG) were prepared with carboxymethyl cashew gum with two different degrees of substitution (DS) and loaded with bovine serum albumin (BSA). In water, for microspheres formed using low molar mass chitosan (LCH) sample swelling was observed for both CMCG samples and CMCG sample with higher DS showed greater swelling. Using high molar mass chitosan (HCH) sample swelling was observed only for microsphere with high DS of CMCG (DS = 0.44). At pH 7.4, the HCH sample led to a lower degree of swelling. The diffusion coefficients Dv were higher for the higher DS of CMCG in both media and the HCH sample had a lower Dv than LCH one. Faster BSA release rates were observed for beads prepared with the higher DS, whereas those prepared with DS = 0.16 took twice the time to reach similar release profiles. All microsphere systems investigated had a non-Fickian BSA release mechanism.  相似文献   

9.
The three new dual-layer matrices (polyacrylonitrile (PAN) membranes coated with physically bound chitosan (CHI)—PANCHI-A and chemically bound chitosan—PANCHI-B and PANCHI-C) for immobilization of acetylcholinesterase (AChE) were obtained. The chemical-modified PAN membrane (PAN-NaOH + ethylenediamine (EDA)) was used as a base for the prepared dual-layer membranes. For chemical chitosan bound membrane, chitosan was tethered onto the membrane surface to form a dual-layer biomimetic membrane in the presence of glutaraldehyde (GA). The basic characteristics (amount of amino groups, hydrophilicity and transport characteristics) of the chitosan-modified membranes were investigated. The SEM analyses were shown essential morphology change in the different chitosan membranes.The relative activities and Vmax of the covalently immobilized enzyme on PANCHI-B and PANCHI-C membranes were higher than that on PANCHI-A membrane and chemical-modified membrane with NaOH + EDA. Km values for the different modified membranes are lower for the chitosan-treated membranes. The pH and temperature optimum of immobilized enzyme were determined. The bound enzymes on PANCHI-B and PANCHI-C have higher thermal and storage stability in comparison with AChE on PANCHI-A membrane and free enzyme.  相似文献   

10.
Polysaccharides-based membranes of chitosan and cellulose blends were prepared using trifluoroacetic acid as a co-solvent. Morphology and mechanical property of prepared membranes were studied by Instron and dynamic mechanical thermal analysis. The mechanical and dynamic mechanical thermal properties of the cellulose/chitosan blends appear to be dominated by cellulose, suggests that cellulose/chitosan blends were not well miscible. It is believed that the intermolecular hydrogen bonding of cellulose is supposed to be break down to form cellulose–chitosan hydrogen bonding; however, the intra-molecular and intra-strand hydrogen bonds hold the network flat. The reduced water vapor transpiration rate through the chitosan/cellulose membranes indicates that the membranes used as a wound dressing may prevent wound from excessive dehydration. The chitosan/cellulose blend membranes demonstrate effective antimicrobial capability against Escherichia coli and Staphylococcus aureus, as examined by the antimicrobial test. These results indicate that the chitosan/cellulose blend membranes may be suitable to be used as a wound dressing with antibacterial properties.  相似文献   

11.
The positive interaction between polysaccharides with active phytochemicals found in medicinal plants may represent a strategy to create active wound dressing materials useful for skin repair. In the present work, blended membranes composed of chitosan (Cht) and aloe vera gel were prepared through the solvent casting, and were crosslinked with genipin to improve their properties. Topography, swelling, wettability, mechanical properties and in vitro cellular response of the membranes were investigated. With the incorporation of aloe vera gel into chitosan solution, the developed chitosan/aloe-based membranes displayed increased roughness and wettability; while the genipin crosslinking promoted the formation of stiffer membranes in comparison to those of the non-modified membranes. Moreover, in vitro cell culture studies evidenced that the L929 cells have high cell viability, confirmed by MTS test and calcein-AM staining. The findings suggested that both blend compositions and crosslinking affected the physico-chemical properties and cellular behavior of the developed membranes.  相似文献   

12.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

13.
Chitosan membranes modified by contact with poly(acrylic acid)   总被引:1,自引:0,他引:1  
In this work chitosan membranes modified by contact with poly(acrylic acid) (PAA) aqueous solution at two different temperatures (25 °C and 60 °C) were obtained. The pure chitosan (CS) membranes, as well as those treated with PAA (CSPAA_25 and CSPAA_60) were characterized by FTIR-ATR, water sorption capacity, thermal analysis (TG/DTG), and scanning electron microscopy (SEM). In addition, in vitro permeation experiments were carried out using metronidazol and sodium sulfamerazine aqueous solutions at 0.1% and 0.2% as model drugs. FTIR-ATR results showed the presence of absorption bands of and COO indicating the formation of a polyelectrolyte complex between chitosan and poly(acrylic acid). The results also indicated that PAA penetrates deeper into the membrane at higher temperature (60 °C), forming a thicker complex layer. Polyelectrolyte complex formation as well as the influence of treatment temperature was confirmed by lower hydrophilicity, higher thermal stability, and lower permeability of the treated membranes. The results show that the methodology used is a simple and very efficient way to drastically change some membrane properties, especially their permeability.  相似文献   

14.
In this study, a 24 factorial experimental design was employed in order to evaluate the influence of the reaction conditions and preparation method on alginate–chitosan hydrogel properties. Alginate content, pH, chitosan molecular weight and the hydrogel preparation method were the independent variables and the reaction yield, particle size, swelling degree and point of zero surface charge were the dependent variables. The results showed that hydrogels were spherical with an average diameter of 5.0 ± 2.0 μm. Reaction yield varied according to the parameters, and chitosan molecular weight showed the greatest influence. Furthermore, the swelling degree and point of zero surface charge showed a linear dependence on the alginate content. In this regard, the study showed that hydrogels with a specific charge and swelling degree can be obtained by controlling the alginate content using the equation here provided to give an enhanced and site-specific controlled drug release.  相似文献   

15.
Chitin is a novel biopolymer and has excellent biological properties such as biodegradation in the human body and biocompatible, bioabsorable, antibacterial and wound healing activities. In this work, α- and β-chitin membranes were prepared using α- and β-chitin hydrogel. The bioactivity studies were carried out using these chitin membranes with the simulated body fluid solution (SBF) for 7, 14 and 21 days. After 7, 14 and 21 days the membranes were characterized using SEM, EDS and FT-IR. The SEM, EDS and FT-IR studies confirmed the formation of calcium phosphate layer on the surface of the both chitin membranes. These results indicate that the prepared chitin membranes were bioactive. Cell adhesion studies were also carried out using MG-63 osteoblast-like cells. The cells were adhered and spread over the membrane after 24 h of incubation. These results indicated that the chitin membranes could be used for tissue-engineering applications.  相似文献   

16.
The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.KEY WORDS: chitosan, formulation, herbal blended patches, HPMC, Zingiber cassumunar Roxb  相似文献   

17.
Biodegradable polylactide/chitosan blend membranes   总被引:6,自引:0,他引:6  
Wan Y  Wu H  Yu A  Wen D 《Biomacromolecules》2006,7(4):1362-1372
Biodegradable blend membranes based on polylactide and chitosan with various compositions were prepared via a two-step processing pathway. In the first step, solutions of each component were properly mixed and cast into a gelatinous membrane, and in the second step, the obtained membrane was immersed into a mixed solution for the solvent extraction followed by a drying procedure to finally generate a well-blended membrane. An acetic acid-acetone solvent system was selected for poly(DL-lactide)/chitosan membranes, and another solvent system for poly(L-lactide)/chitosan membranes consisted of acetic acid and dimethyl sulfoxide. Some processing parameters, such as the concentration of component solutions and the composition ratio of mixed solvents and extraction solvents, were optimized by primarily considering whether the directly visible phase separation occurred during the processing procedures. Morphologies of these blend membranes were viewed using SEM. It was found that the processing parameters exerted quite notable impacts on the morphology of the membranes. The hydrophilicity of membranes was examined by measuring their water contact angle and swelling index. These blend membranes were also investigated for their miscibility using IR spectra, X-ray diffractograms, TG, DSC, and dynamic mechanical analysis methods. Although the presence of phase separation at a microscopic level was detected for these membranes, pronounced interactions between components were confirmed. The obtained results shown that some membranes prepared under optimized processing conditions had a partially miscible structure.  相似文献   

18.
A freeze-gelation method was utilized to prepare porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose because of their usefulness in tissue engineering applications. These polysaccharide solutions were cooled down to freezing using either a fast-cooling (FC) mode (>20 °C/min) or a slow-cooling (SC) mode (0.83 °C/min). Then the frozen polysaccharide solutions were immersed in their respective non-solvents to form porous scaffolds. Based on the SEM and optical microscope images of the scaffolds, the FC mode induced non-simultaneous nucleation and generated directional pore structures. In contrast, simultaneous nucleation and uniform and isotropic pore structures (mean pore size: 60–100 μm) were obtained by using the SC mode. Moreover, the tensile strength of the scaffolds prepared by the SC mode (about 60 N/g) was three times higher than that of scaffolds prepared by the FC mode (about 20 N/g). This study reveals that when using the freeze-gelation method, the cooling rate (mode) is a crucial factor which controls the pore structure and strength of porous scaffolds. Therefore, our results suggest that polysaccharide scaffolds with pore structures suitable for tissue engineering applications can be obtained via an appropriate cooling mode.  相似文献   

19.
Substituted polyaniline/chitosan(PANIs/Ch) composites were chemically synthesized by using ammonium peroxydisulfate as oxidant and characterized by measurements of conductivity, FTIR, UV–vis, SEM and TGA techniques. FTIR spectra of the composites revealed that there is a strong interaction between substituted polyanilines and chitosan. Among the substituted polyaniline/chitosan composites synthesized, poly(N-ethylaniline)/chitosan PNEANI/Ch has the highest conductivity with a value of 1.68 × 10?4 S/cm. The P2EANI/Ch composite exhibited higher thermal stability than the other composites. SEM images of the composites showed an agglomerated granular morphology of substituted polyaniline particles coated on the surface of chitosan.  相似文献   

20.
Pure chitosan, glutaraldehyde crosslinked chitosan, and a blend of chitosan with poly(ethylene oxide) (PEO) membranes were prepared. The three membranes were characterized in terms of their swelling capacities as well as their permeabilities to a drug model (sulfamerazine sodium salt). For the permeation experiments, the variables analyzed were the type of membrane and the initial drug concentration in the liquid phase (from 0.1% to 1.5%). Permeability coefficients were calculated using UV spectroscopy. The results showed that for the three analyzed membranes, the permeability did not change with time (over the studied time interval). An increase in the permeability for CHI/PEO membranes compared to those made of pure chitosan was also observed, possibly due to microporous region formation and/or crystallinity reduction. For the crosslinked membrane, an even higher increase in the permeability coefficient was observed. In this case, the increase was attributed to free volume variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号