首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading various isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K(infm) and V(infmax) values of 1.4 (mu)M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting the presence of two uptake systems for benzoic acid with distinct K(infm) (0.72 and 5.3 (mu)M) and V(infmax) (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3(prm1), 4(prm1)-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.  相似文献   

2.
Brassinosteroids (BRs) are essential steroid hormones that have crucial roles in plant growth and development. BRs are perceived by the cell-surface receptor-like kinase brassinosteroid insensitive 1 (BRI1). In the absence of BRs, the cytosolic kinase domain (KD) of BRI1 is inhibited by its auto-inhibitory carboxyl terminus, as well as by interacting with an inhibitor protein, BRI1 kinase inhibitor 1 (BKI1). How BR binding to the extracellular domain of BRI1 leads to activation of the KD and dissociation of BKI1 into the cytosol remains unclear. Here we report the crystal structure of BRI1 KD in complex with the interacting peptide derived from BKI1. We also provide biochemical evidence that BRI1-associated kinase 1 (BAK1) plays an essential role in initiating BR signaling. Steroid-dependent heterodimerization of BRI1 and BAK1 ectodomains brings their cytoplasmic KDs in the right orientation for competing with BKI1 and transphosphorylation.  相似文献   

3.
Vidal R  Calero M  Révész T  Plant G  Ghiso J  Frangione B 《Gene》2001,266(1-2):95-102
The BRI3 gene is a member of the BRI gene family, made up of at least three different genes (BRI1-3). Previous studies established the cDNA sequence and structure of the human and mouse BRI1 and BRI2 genes and we recently reported that mutations in the BRI2 isoform, located on chromosome 13, are associated with dementia in humans. In the present work, we determine the complete cDNA sequence and genomic organization of the human BRI3 gene. BRI3 codes for a polypeptide of 267 amino acids, with a Mr of 30 KDa and a pI of 8.47. The amino acid sequence is 43.7% identical to the sequence of the human BRI2, and 38.3% identical to that of human BRI1, with the highest percentage of amino acid identity being concentrated on the C-terminal half of the molecules. In Northern blots, BRI3 cDNA hybridizes only one message of approximately 2.1 kilobases, which is predominantly present in the human brain. The BRI3 gene is localized on chromosome 2 and consists of six exons spanning more than 20 kb. Homology search of EST data banks retrieved a Caenorhabditis briggsae homolog of BRI, indicating that the BRI gene belongs to a strongly conserved gene family. These studies, aimed at characterizing the members of the BRI gene family, may provide valuable clues to the understanding of their normal function and how mutations in BRI2 can cause neurodegeneration and dementia similar to Alzheimer's disease.  相似文献   

4.
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (
35S:TomatoBRI1 complemented lineWt*cu3*
6-deoxocathasterone566964676
6-deoxoteasteronend4748
3-dehydro-6-deoxoteasterone876269
6-deoxotyphasterolnd588422
6-deoxocastasterone1,7556,24726,210
castasterone25563717,428
brassinolidendndnd
Open in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

5.
Properties of neurotoxic peptides related to the BRI gene   总被引:2,自引:0,他引:2  
Austen B  el-Agnaf O  Nagala S  Patel B  Gunasekera N  Lee M  Lelyveld V 《Biochemical Society transactions》2002,30(4):557-559
Mutations in the BRI gene are thought to cause dementias in members of families. The clinical symptoms are similar to those of Alzheimer's disease, but with additional ocular and hearing deficits, and spasticity. The mutations lead to the release of the 34-residue peptides, ABri and ADan, in the brains of afflicted individuals. We have synthesized the peptides in their straight-chain and oxidized cyclic forms and shown that the oxidized form of ABri and reduced form of ADan are toxic to human neuronal cell lines in culture. Neurotoxicity correlates with the extent of formation of SDS-stable non-fibrillar low-molecular-mass oligomers (SSNFOs).  相似文献   

6.
NRBP1-Containing CRL2/CRL4A Regulates Amyloid β Production by Targeting BRI2 and BRI3 for Degradation     
《Cell reports》2020,30(10):3478-3491.e6
  1. Download : Download high-res image (199KB)
  2. Download : Download full-size image
  相似文献   

7.
BRI2 as a central protein involved in neurodegeneration     
Maria Tsachaki  Jorge Ghiso  Spiros Efthimiopoulos Dr. 《Biotechnology journal》2008,3(12):1548-1554
BRI2 is a protein that when mutated causes familial British and familial Danish dementias. Upon cleavage, the mutated BRI2 proteins release the peptides ABri and ADan, which are amyloidogenic and accumulate in the brains of patients. Although BRI2 has an unknown function, several reports indicate that it could play multiple roles. For example, the fact that it exists at the cell surface as a homodimer indicates that it could be involved in cell signaling events by acting as a receptor. BRI2 also interacts with amyloid precursor protein (APP), involved in Alzheimer's disease (AD). In cell cultures and mouse models of AD, BRI2 inhibits APP processing and reduces amyloid β peptide deposition. The interaction between the two proteins could be responsible for the neuropathological similarities between familial British/Danish dementias and AD. The study of BRI2, which is central in familial British and Danish dementia, could unravel underlying molecular mechanisms of neurodegeneration.  相似文献   

8.
Fluorescent castasterone reveals BRI1 signaling from the plasma membrane     
Irani NG  Di Rubbo S  Mylle E  Van den Begin J  Schneider-Pizoń J  Hniliková J  Šíša M  Buyst D  Vilarrasa-Blasi J  Szatmári AM  Van Damme D  Mishev K  Codreanu MC  Kohout L  Strnad M  Caño-Delgado AI  Friml J  Madder A  Russinova E 《Nature chemical biology》2012,8(6):583-589
Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor-like kinases in plants, BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a bioactive, fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS), and visualized the endocytosis of BRI1-AFCS complexes in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma membrane. Increasing the trans-Golgi network/early endosome pool of BRI1-BR complexes did not affect BR signaling. Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- and ARF-GEF-dependent endocytic regulation of BR signaling from the plasma membrane.  相似文献   

9.
BAK1 Directly Regulates Brassinosteroid Perception and BRI1 Activation     
Kai He  Shengbao Xu  Jia Li 《植物学报(英文版)》2013,55(12):1264-1270
Plants utilize plasma membrane-localized receptor-like kinases (RLKs) to sense extracellular signals to coordinate growth, development, and innate immune responses. BAK1 regulates multiple signaling pathways acting as a co-receptor of several distinct ligand-binding RLKs. It has been debated whether BAK1 serves as an essential regulatory component or only a signal amplifier without pathway specificity. This issue has been clarified recently. Genetic and structural analyses indicated that BAK1 and its homologs play indispensible roles in mediating brassinosteroid (BR) signaling pathway by directly perceiving the ligand BR and activating the receptor of BR, BRII. The mechanism revealed by these studies now serves as a paradigm for how a pair of RLKs can function together in ligand binding and subsequent initiation of signaling.  相似文献   

10.
Plasma membrane glycosphingolipids (GSLs) of the human lymphoblastoid cell-line BRI 8 and differences between the GSLs of BRI 8 cells and those of peripheral lymphocytes.     
G M Levis  J N Karli  N J Crumpton 《Biochemical and biophysical research communications》1976,68(2):336-342
A cyclic undecapeptide, Wy-40,770, has been synthesized by a combination of solid phase and conventional peptide synthesis methodology. The compound inhibits the release of growth hormone without significantly affecting glucagon levels in rats. Wy-40,770 shows growth hormone release inhibiting activity for four hours after s.c. injection.  相似文献   

11.
Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis     
Lidia Hategan  Blanka Godza  Laszlo Kozma-Bognar  Gerard J. Bishop  Miklos Szekeres 《Planta》2014,239(5):989-1001
  相似文献   

12.
Augmentation of drug-induced cell death by ER protein BRI3BP     
Yamazaki T  Sasaki N  Nishi M  Yamazaki D  Ikeda A  Okuno Y  Komazaki S  Takeshima H 《Biochemical and biophysical research communications》2007,362(4):971-975
To determine the contribution of the endoplasmic reticulum (ER) to cell fate decision, we focused on BRI3-binding protein (BRI3BP) residing in this organelle. BRI3BP, when overexpressed, augmented the apoptosis of human embryonic kidney 293T cells challenged with drugs including the anti-cancer agent etoposide. In contrast, the knockdown of BRI3BP reduced the drug-triggered apoptosis. BRI3BP overexpression enhanced both mitochondrial cytochrome c release and caspase-3 activity in etoposide-treated cells. In response to etoposide, the ER reorganized into irregularly shaped lamellae in mock-transfected cells, whereas in BRI3BP-overexpressing cells, such reorganization was not observed. These observations suggest that BRI3BP is involved in the structural dynamics of the ER and affects mitochondrial viability. Taken together, BRI3BP, widely expressed in animal cell types, seems to possess a pro-apoptotic property and can potentiate drug-induced apoptosis.  相似文献   

13.
Multiple N-glycans cooperate in balancing misfolded BRI1 secretion and ER retention     
Chen  Tianshu  Zhang  Huchen  Niu  Guanting  Zhang  Shuo  Hong  Zhi 《Plant molecular biology》2020,103(4-5):581-596
Key message

N-glycans play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.

Abstract

Asparagine-linked (Asn/N-) glycosylation is one of the most prevalent and complex protein modifications and the associated N-glycans play crucial roles on protein folding and secretion. The studies have shown that many glycoproteins hold multiple N-glycans, yet little is known about the redundancy of N-glycans on a protein. In this study, we used BRI1 to decipher the roles of N-glycans on protein secretion and function. We found that all 14 potential N-glycosylation sites on BRI1 were occupied with oligosaccharides. The elimination of single N-glycan had no obvious effect on BRI1 secretion or function except N154-glycan, which resulted in the retention of BRI1 in the endoplasmic reticulum (ER), similar to the loss of multiple highly conserved N-glycans. To misfolded bri1, the absence of N-glycans next to local structural defects enhanced the ER retention and the artificial addition of N-glycan could help the misfolded bri1-GFPs exiting from the ER, indicating that the N-glycans might serve as steric hindrance to protect the structure defects from ER recognition. We also found that the retention of misfolded bri1-9 by lectins and chaperones in the ER relied on the presence of multiple N-glycans distal to the local defects. Our findings revealed that the N-glycans might play a protective or monitoring role according to the folding state of associated protein or the distance from structural defects.

  相似文献   

14.
Brassinosteroid-independent functions of the BRI1-associated kinase BAK1/SERK3     
Birgit Kemmerling  Thorsten Nürnberger 《Plant signaling & behavior》2008,3(2):116-118
Eukaryotes have evolved programmed cell death (PCD) mechanisms that play important roles in both, development and immunity.13 We demonstrated a requirement for the Arabidopsis thaliana leucine-rich repeat receptor-like kinase (LRR-RLK), BAK1/SERK3 (BRI1-Associated receptor Kinase 1/Somatic Embryogenesis Receptor Kinase 3) in regulating the containment of microbial infection-induced necrosis. BAK1-deficient plants showed constitutive expression of defense-related genes and developed spreading cell death upon infection by necrotizing pathogens that result in enhanced susceptibility to necrotrophic pathogens. This reaction was not inducible by exposition of bak1 mutants to general stresses but appeared to be solely inducible by necrotizing pathogen infection. BAK1 is known to interact with the brassinosteroid receptor, BRI1, and thereby facilitates plant growth and development in a brassinolide (BL)-dependent manner.4,5 Surprisingly, the cell death-related phenotype in bak1 mutants is brassinolide-independent. In this addendum we want to present recent new data on BAK1 and discuss its role as a general regulator in plant processes being as diverse as brassinosteroid signaling in development, perception of pathogen associated molecular patterns (PAMPs), and cell-death control in innate immunity.Key words: LRR-RLK, cell-death control, immunity, brassinosteroids, BAK1, SERK3, BRI1, FLS2  相似文献   

15.
A Non-canonical Transferred DNA Insertion at the BRI1 Locus in Arabidopsis thaliana     
Zhong Zhao  ;Yan Zhu  ;Mathieu Erhardt  ;Ying Ruan  ;Wen-Hui Shen 《Acta Botanica Sinica》2009,(4):367-373
  相似文献   

16.
A Non-canonical Transferred DNA Insertion at the BRI 1 Locus in Arabidopsis thaliana     
Zhong Zhao  Yan Zhu  Mathieu Erhardt  Ying Ruan  Wen-Hui Shen 《植物学报(英文版)》2009,51(4):367-373
Agrobacterium-mediated transformation is widely used in transgenic plant englnserlng and has been proven to be a powerful tool for insertional mutagenesis of the plant genome.The transferred DNA (T-DNA) from Agrobacterlum is Integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA.Contrasting to the canonical insertion,here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI 1 gene in Arabidopsis thaliana.We obtained a mutant line,named salade for its phenotype of dwarf stature and proliferating rosette,Molecular charactedzation of this mutant revealed that in addition to T-DNA a non.T.DNA-Iocalized transposon from bacteda was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arebidopsis genome was deleted at the insertion site.The deleted region contains the brassinosteroid receptor gene BRI 1 and the transcdption factor gene WRKY13.Our finding reveals non-canonical T-DNA insertion,implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.  相似文献   

17.
BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling   总被引:48,自引:0,他引:48  
Nam KH  Li J 《Cell》2002,110(2):203-212
The Arabidopsis BAK1 (BRI1 Associated receptor Kinase 1) was identified by a yeast two-hybrid screen as a specific interactor for BRI1, a critical component of a membrane brassinosteroid (BR) receptor. In yeast, BAK1/BRI1 interaction activates their kinase activities through transphosphorylation. BAK1 and BRI1 share similar gene expression and subcellular localization patterns and physically associate with each other in plants. Overexpression of the BAK1 gene leads to a phenotype reminiscent of BRI1-overexpression transgenic plants and rescues a weak bri1 mutant. In contrast, a bak1 knockout mutation gives rise to a weak bri1-like phenotype and enhances a weak bri1 mutation. We propose that BAK1 and BRI1 function together to mediate plant steroid signaling.  相似文献   

18.
BRI2 Processing and Its Neuritogenic Role Are Modulated by Protein Phosphatase 1 Complexing          下载免费PDF全文
Filipa Martins  Joana B. Serrano  Thorsten Müller  Odete A.B. da Cruz e Silva  Sandra Rebelo 《Journal of cellular biochemistry》2017,118(9):2752-2763
  相似文献   

19.
CRISPR/Cas9介导靶向敲除拟南芥BRI1突变体的鉴定     
武国凡  成宏斌  吴玉俊  沈娟  吴旺泽 《植物研究》2021,(3)
以拟南芥(Arabidopsis thaliana)油菜素内酯受体BRI1为目的基因,利用CRISPR/Cas9基因编辑技术定向编辑拟南芥BRI1,以期获得更多BRI1的突变体,为后续BRI1功能的进一步深入研究奠定基础。通过筛选转基因植株,对编辑后的BRI1进行测序分析,结果显示该突变体中BRI1基因序列由于新碱基的插入导致提前终止。同BRI1强突变体bri1-710一样,相比于野生型对照均对BL处理不敏感,但相比于bri1-710,该突变体植株较大,暗示BRI1 N端可能在BR信号途径中有重要作用。因此该研究可为后续进一步研究拟南芥及其他同源物种的BRI1功能提供可靠的参考依据。  相似文献   

20.
Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1     
Wang X  Li X  Meisenhelder J  Hunter T  Yoshida S  Asami T  Chory J 《Developmental cell》2005,8(6):855-865
The leucine-rich-repeat receptor serine/threonine kinase, BRI1, is a cell-surface receptor for brassinosteroids (BRs), the steroid hormones of plants, yet its activation mechanism is unknown. Here, we report a unique autoregulatory mechanism of BRI1 activation. Removal of BRI1's C terminus leads to a hypersensitive receptor, indicated by suppression of dwarfism of BR-deficient and BR-perception mutants and by enhanced BR signaling as a result of elevated phosphorylation of BRI1. Several sites in the C-terminal region can be phosphorylated in vitro, and transgenic Arabidopsis expressing BRI1 mutated at these sites demonstrates an essential role of phosphorylation in BRI1 activation. BRI1 is a ligand-independent homo-oligomer, as evidenced by the transphosphorylation of BRI1 kinase in vitro, the dominant-negative effect of a kinase-inactive BRI1 in transgenic Arabidopsis, and coimmunoprecipitation experiments. Our results support a BRI1-activation model that involves inhibition of kinase activity by its C-terminal domain, which is relieved upon ligand binding to the extracellular domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号