首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of interfollicular epidermis and many hair follicles simultaneously, enabling us to evaluate stem cell markers and examine the effects of different stimuli on the LRC population. LRC are not confined to the hair follicle, but also lie in sebaceous glands and interfollicular epidermis. LRC reside throughout the permanent region of the hair follicle, where they express keratin 15 and lie in a region of high alpha6beta4 integrin expression. LRC are not significantly depleted by successive hair growth cycles. They can, nevertheless, be stimulated to divide by treatment with phorbol ester, resulting in near complete loss of LRC within 12 days. Activation of Myc stimulates epidermal proliferation without depleting LRC and induces differentiation of sebocytes within the interfollicular epidermis. Expression of N-terminally truncated Lef1 to block beta-catenin signalling induces transdifferentiation of hair follicles into interfollicular epidermis and sebocytes and causes loss of LRC primarily through proliferation. We conclude that LRC are more sensitive to some proliferative stimuli than others and that changes in lineage can occur with or without recruitment of LRC into cycle.  相似文献   

3.
To examine the consequences of repressing beta-catenin/Lef1 signalling in mouse epidermis, we expressed a DeltaNLef1 transgene, which lacks the beta-catenin binding site, under the control of the keratin 14 promoter. No skin abnormalities were detected before the first postnatal hair cycle. However, from 6 weeks of age, mice underwent progressive hair loss which correlated with the development of dermal cysts. The cysts were derived from the base of the hair follicles and expressed morphological and molecular markers of interfollicular epidermis. Adult mice developed spontaneous skin tumours, most of which exhibited sebaceous differentiation, which could be indicative of an origin in the upper part of the hair follicle. The transgene continued to be expressed in the tumours and beta-catenin signalling was still inhibited, as evidenced by absence of cyclin D1 expression. However, patched mRNA expression was upregulated, suggesting that the sonic hedgehog pathway might play a role in tumour formation. Based on our results and previous data on the consequences of activating beta-catenin/Lef1 signalling in postnatal keratinocytes, we conclude that the level of beta-catenin signalling determines whether keratinocytes differentiate into hair or interfollicular epidermis, and that perturbation of the pathway by overexpression of DeltaNLef1 can lead to skin tumour formation.  相似文献   

4.
Using K14deltaNbeta-cateninER transgenic mice, we show that short-term, low-level beta-catenin activation stimulates de novo hair follicle formation from sebaceous glands and interfollicular epidermis, while only sustained, high-level activation induces new follicles from preexisting follicles. The Hedgehog pathway is upregulated by beta-catenin activation, and inhibition of Hedgehog signaling converts the low beta-catenin phenotype to wild-type epidermis and the high phenotype to low. beta-catenin-induced follicles contain clonogenic keratinocytes that express bulge markers; the follicles induce dermal papillae and provide a niche for melanocytes, and they undergo 4OHT-dependent cycles of growth and regression. New follicles induced in interfollicular epidermis are derived from that cellular compartment and not through bulge stem cell migration or division. These results demonstrate the remarkable capacity of adult epidermis to be reprogrammed by titrating beta-catenin and Hedgehog signal strength and establish that cells from interfollicular epidermis can acquire certain characteristics of bulge stem cells.  相似文献   

5.
Retinoic acid (RA) signalling is essential for epidermal differentiation; however, the mechanisms by which it acts are largely unexplored. Partitioning of RA between different nuclear receptors is regulated by RA-binding proteins. We show that cellular RA-binding proteins CRABP1 and CRABP2 and the fatty acid-binding protein FABP5 are dynamically expressed during skin development and in adult tissue. CRABP1 is expressed in embryonic dermis and in the stroma of skin tumours, but confined to the hair follicle dermal papilla in normal postnatal skin. CRABP2 and FABP5 are expressed in the differentiating cells of sebaceous gland, interfollicular epidermis and hair follicles, with FABP5 being a prominent marker of sebaceous glands and anagen follicle bulbs. All three proteins are upregulated in response to RA treatment or Notch activation and are negatively regulated by Wnt/β-catenin signalling. Ectopic follicles induced by β-catenin arise from areas of the sebaceous gland that have lost CRABP2 and FABP5; conversely, inhibition of hair follicle formation by N-terminally truncated Lef1 results in upregulation of CRABP2 and FABP5. Our findings demonstrate that there is dynamic regulation of RA signalling in different regions of the skin and provide evidence for interactions between the RA, β-catenin and Notch pathways.  相似文献   

6.
7.
BACKGROUND: The epidermis is maintained throughout adult life by pluripotential stem cells that give rise, via daughter cells of restricted self-renewal capacity and high differentiation probability (transit-amplifying cells), to interfollicular epidermis, hair follicles, and sebaceous glands. In vivo, transit-amplifying cells are actively cycling, whereas stem cells divide infrequently. Experiments with cultured human keratinocytes suggest that c-Myc promotes epidermal-stem cell differentiation. However, Myc is a potent oncogene that suppresses differentiation and causes reversible neoplasia when expressed in the differentiating epidermal layers of transgenic mice. To investigate the effects of c-Myc on the stem cell compartment in vivo, we targetted c-MycER to the basal layer of transgenic mouse epidermis. RESULTS: The activation of c-Myc by the application of 4-hydroxy-tamoxifen caused progressive and irreversible changes in adult epidermis. Proliferation was stimulated, but interfollicular keratinocytes still underwent normal terminal differentiation. Hair follicles were abnormal, and sebaceous differentiation was stimulated at the expense of hair differentiation. The activation of c-Myc by a single application of 4-hydroxy-tamoxifen was as effective as continuous treatment in stimulating proliferation and sebocyte differentiation, and the c-Myc-induced phenotype continued to develop even after the grafting of treated skin to an untreated recipient. CONCLUSIONS: We propose that transient activation of c-Myc drives keratinocytes from the stem to the transit-amplifying compartment and thereby stimulates proliferation and differentiation along the epidermal and sebaceous lineages. The ability, demonstrated here for the first time, to manipulate exit from the stem cell compartment in vivo will facilitate further investigations of the relationship between stem cells and cancer.  相似文献   

8.
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were microdissected to obtain an enriched population of keratin 15 positive skin stem cells. By expressing human papillomavirus 16 E6/E7 genes in these stem cells, we have been able to culture the cells for >30 passages and maintain a stable phenotype after 12 mo of continuous passage. The cell line was compared to primary stem cells for expression of stem cell specific proteins, for in vitro stem cell properties, and for their capacity to differentiate into different cell lineages. This new cell line, named Tel-E6E7 showed similar expression patterns to normal skin stem cells and maintained in vitro properties of stem cells. The cells can differentiate into epidermal, sebaceous gland, and hair follicle lineages. Intact beta-catenin dependent signaling, which is known to control in vivo hair differentiation in rodents, is maintained in this cell line. The Tel-E6E7 cell line may provide the basis for valid, reproducible in vitro models for studies on stem cell lineage determination and differentiation.  相似文献   

9.
10.
Continuous renewal of the epidermis and its appendages throughout life depends on the proliferation of a distinct population of cells called stem cells. We have used in situ retrovirus-mediated gene transfer to genetically mark cutaneous epithelial stem cells of adolescent mice, and have followed the fate of the marked progeny after at least 37 epidermal turnovers and five cycles of depilation-induced hair growth. Histological examination of serial sections of labeled pilosebaceous units demonstrated a complex cell lineage. In most instances, labeled cells were confined to one or more follicular compartments or solely to sebaceous glands. Labeled keratinocytes in interfollicular epidermis were confined to distinct columnar units representing epidermal proliferative units. The contribution of hair follicles to the epidermis was limited to a small rim of epidermis at the margin of the follicle, indicating that long term maintenance of interfollicular epidermis was independent of follicle-derived cells. Our results indicate the presence of multiple stem cells in cutaneous epithelium, some with restricted lineages in the absence of major injury.  相似文献   

11.
12.
Effects of Wnt-10b on hair shaft growth in hair follicle cultures   总被引:1,自引:0,他引:1  
Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via beta-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and beta-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/beta-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b.  相似文献   

13.
To assess whether Smad signaling affects skin development, we generated transgenic mice in which a Smad antagonist, Smad7, was induced in keratinocytes, including epidermal stem cells. Smad7 transgene induction perturbed hair follicle morphogenesis and differentiation, but accelerated sebaceous gland morphogenesis. Further analysis revealed that independent of its role in anti-Smad signaling, Smad7 bound beta-catenin and induced beta-catenin degradation by recruiting an E3 ligase, Smurf2, to the Smad7/beta-catenin complex. Consequently, Wnt/beta-catenin signaling was suppressed in Smad7 transgenic hair follicles. Coexpression of the Smurf2 and Smad7 transgenes exacerbated Smad7-induced abnormalities in hair follicles and sebaceous glands. Conversely, when endogenous Smad7 was knocked down, keratinocytes exhibited increased beta-catenin protein and enhanced Wnt signaling. Our data reveal a mechanism for Smad7 in antagonizing Wnt/beta-catenin signaling, thereby shifting the skin differentiation program from forming hair follicles to sebaceous glands.  相似文献   

14.

Background  

Skin stem cells contribute to all three major lineages of epidermal appendages, i.e., the epidermis, the hair follicle, and the sebaceous gland. In hair follicles, highly proliferative committed progenitor cells, called matrix cells, are located at the base of the follicle in the hair bulb. The differentiation of these early progenitor cells leads to specification of a central hair shaft surrounded by an inner root sheath (IRS) and a companion layer. Multiple signaling molecules, including bone morphogenetic proteins (BMPs), have been implicated in this process.  相似文献   

15.
Designer skin: lineage commitment in postnatal epidermis   总被引:20,自引:0,他引:20  
The epidermis is populated by stem cells that produce daughters that differentiate to form the interfollicular epidermis, hair follicles and sebaceous glands. Diffusible factors, cell-cell contact and extracellular matrix proteins are all important components of the microenvironment of individual stem cells and profoundly affect the differentiation pathways selected by their progeny. Here, we summarize what is known about stem-cell populations and lineage relationships within the epidermis. We also present evidence that postnatal epidermis can be reprogrammed, altering the number and location of cells that differentiate along specific epidermal lineages.  相似文献   

16.
成体的皮肤一生都在不断的自我更新,其中的毛囊还是保证毛发进行生长-脱落周期循环的细胞组织学基础。存在于表皮内的干细胞维持了成体皮肤的自我平衡及毛发再生。表皮是由构体分子组成。每个构体分子包含毛皮脂单位(毛囊和皮脂腺)及其周围的毛囊间表皮。毛囊间表皮具有祖细胞,损伤时能自我更新;毛囊具有多能干细胞,在新毛发周期开始或者损伤时能够启动干细胞功能,为毛囊的生长或表皮的修复提供细胞来源。本文概述了当前对表皮干细胞的认识,着重阐明毛囊间表皮内有祖细胞的证据,毛囊间表皮干细胞在体外的自我更新能力,毛囊膨突部内干细胞的特征和一些相关基因的表达等。  相似文献   

17.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   

18.
Hoxa4 expression in developing mouse hair follicles and skin   总被引:1,自引:0,他引:1  
We have examined the expression of the Hoxa4 gene in embryonic vibrissae and developing and cycling postnatal pelage hair follicles by digoxigenin-based in situ hybridization. Hoxa4 expression is first seen in E13.5 vibrissae throughout the follicle placode. From E15.5 to E18.5 its expression is restricted to Henle's layer of the inner root sheath. Postnatally, Hoxa4 expression is observed at all stages of developing pelage follicles, from P0 to P4. Sites of expression include both inner and outer root sheaths, matrix cells, and the interfollicular epidermis. Hoxa4 is not expressed in hair follicles after P4. Hoxb4, however, is expressed both in developing follicles at P2 and in catagen at P19, suggesting differential expression of these two paralogous genes in the hair follicle cycle.  相似文献   

19.
E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation. Overall tissue integrity and desmosomal structures were maintained, but skin hair follicles were progressively lost. Tumors were not observed and beta-catenin levels were not strongly altered in the mutant skin. We conclude that E-cadherin is required for maintaining the adhesive properties of adherens junctions in keratinocytes and proper skin differentiation. Furthermore, continuous hair follicle cycling is dependent on E-cadherin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号