首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (DeltaNbeta-cateninER). DeltaNbeta-cateninER was expressed in the epidermis of transgenic mice under the control of the keratin 14 promoter and beta-catenin activity was induced in adult epidermis by topical application of 4-hydroxytamoxifen (4OHT). Within 7 days of daily 4OHT treatment resting hair follicles were recruited into the hair growth cycle and epithelial outgrowths formed from existing hair follicles and from interfollicular epidermis. The outgrowths expressed Sonic hedgehog, Patched and markers of hair follicle differentiation, indicative of de novo follicle formation. The interfollicular epidermal differentiation program was largely unaffected but after an initial wave of sebaceous gland duplication sebocyte differentiation was inhibited. A single application of 4OHT was as effective as repeated doses in inducing new follicles and growth of existing follicles. Treatment of epidermis with 4OHT for 21 days resulted in conversion of hair follicles to benign tumours resembling trichofolliculomas. The tumours were dependent on continuous activation of beta-catenin and by 28 days after removal of the drug they had largely regressed. We conclude that interfollicular epidermis and sebaceous glands retain the ability to be reprogrammed in adult life and that continuous beta-catenin signalling is required to maintain hair follicle tumours.  相似文献   

2.
Retinoic acid (RA) signalling is essential for epidermal differentiation; however, the mechanisms by which it acts are largely unexplored. Partitioning of RA between different nuclear receptors is regulated by RA-binding proteins. We show that cellular RA-binding proteins CRABP1 and CRABP2 and the fatty acid-binding protein FABP5 are dynamically expressed during skin development and in adult tissue. CRABP1 is expressed in embryonic dermis and in the stroma of skin tumours, but confined to the hair follicle dermal papilla in normal postnatal skin. CRABP2 and FABP5 are expressed in the differentiating cells of sebaceous gland, interfollicular epidermis and hair follicles, with FABP5 being a prominent marker of sebaceous glands and anagen follicle bulbs. All three proteins are upregulated in response to RA treatment or Notch activation and are negatively regulated by Wnt/β-catenin signalling. Ectopic follicles induced by β-catenin arise from areas of the sebaceous gland that have lost CRABP2 and FABP5; conversely, inhibition of hair follicle formation by N-terminally truncated Lef1 results in upregulation of CRABP2 and FABP5. Our findings demonstrate that there is dynamic regulation of RA signalling in different regions of the skin and provide evidence for interactions between the RA, β-catenin and Notch pathways.  相似文献   

3.
4.
Phospholipase Cdelta1 is required for skin stem cell lineage commitment   总被引:1,自引:0,他引:1  
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in phosphoinositide turnover and is involved in a variety of physiological functions. Here we report that PLCdelta(1)-deficient mice undergo progressive hair loss in the first postnatal hair cycle. Epidermal hyperplasia was observed, and many hairs in the skin of PLCdelta(1)-deficient mice failed to penetrate the epidermis and became zigzagged owing to occlusion of the hair canal. Two major downstream signals of PLC, calcium elevation and protein kinase C activation, were impaired in the keratinocytes and skin of PLCdelta(1)-deficient mice. In addition, many cysts that had remarkable similarities to interfollicular epidermis, as well as hyperplasia of sebaceous glands, were observed. Furthermore, PLCdelta(1)-deficient mice developed spontaneous skin tumors that had characteristics of both interfollicular epidermis and sebaceous glands. From these results, we conclude that PLCdelta(1) is required for skin stem cell lineage commitment.  相似文献   

5.
6.
RXR-alpha is the most abundant of the three retinoid X receptors (RXRs) in the epidermis. In this study, we have used Cre-mediated recombination to selectively disrupt the mouse gene for RXR-alpha in epidermal and hair follicle keratinocytes. We show that RXR-alpha is apparently dispensable for prenatal epidermal development, while it is involved in postnatal skin maturation. After the first hair pelage, mutant mice develop a progressive alopecia, histologically characterised by the destruction of hair follicle architecture and the formation of utriculi and dermal cysts in adult mice. Our results demonstrate that RXR-alpha plays a key role in anagen initiation during the hair follicle cycle. In addition, RXR-alpha ablation results in epidermal interfollicular hyperplasia with keratinocyte hyperproliferation and aberrant terminal differentiation, accompanied by an inflammatory reaction of the skin. Our data not only provide genetic evidence that RXR-alpha/VDR heterodimers play a major role in controlling hair cycling, but also suggest that additional signalling pathways mediated by RXR-alpha heterodimerised with other nuclear receptors are involved in postnatal hair follicle growth, and homeostasis of proliferation/differentiation of epidermal keratinocytes and of the skin's immune system.  相似文献   

7.
Using K14deltaNbeta-cateninER transgenic mice, we show that short-term, low-level beta-catenin activation stimulates de novo hair follicle formation from sebaceous glands and interfollicular epidermis, while only sustained, high-level activation induces new follicles from preexisting follicles. The Hedgehog pathway is upregulated by beta-catenin activation, and inhibition of Hedgehog signaling converts the low beta-catenin phenotype to wild-type epidermis and the high phenotype to low. beta-catenin-induced follicles contain clonogenic keratinocytes that express bulge markers; the follicles induce dermal papillae and provide a niche for melanocytes, and they undergo 4OHT-dependent cycles of growth and regression. New follicles induced in interfollicular epidermis are derived from that cellular compartment and not through bulge stem cell migration or division. These results demonstrate the remarkable capacity of adult epidermis to be reprogrammed by titrating beta-catenin and Hedgehog signal strength and establish that cells from interfollicular epidermis can acquire certain characteristics of bulge stem cells.  相似文献   

8.
9.
10.
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of interfollicular epidermis and many hair follicles simultaneously, enabling us to evaluate stem cell markers and examine the effects of different stimuli on the LRC population. LRC are not confined to the hair follicle, but also lie in sebaceous glands and interfollicular epidermis. LRC reside throughout the permanent region of the hair follicle, where they express keratin 15 and lie in a region of high alpha6beta4 integrin expression. LRC are not significantly depleted by successive hair growth cycles. They can, nevertheless, be stimulated to divide by treatment with phorbol ester, resulting in near complete loss of LRC within 12 days. Activation of Myc stimulates epidermal proliferation without depleting LRC and induces differentiation of sebocytes within the interfollicular epidermis. Expression of N-terminally truncated Lef1 to block beta-catenin signalling induces transdifferentiation of hair follicles into interfollicular epidermis and sebocytes and causes loss of LRC primarily through proliferation. We conclude that LRC are more sensitive to some proliferative stimuli than others and that changes in lineage can occur with or without recruitment of LRC into cycle.  相似文献   

11.
The functions of p107 and p130, members of the retinoblastoma family, include the control of cell cycle progression and differentiation in several tissues. Our previous studies suggested a role for p107 and p130 in keratinocyte differentiation in vitro. We now extend these data using knockout animal models. We found impaired terminal differentiation in the interfollicular keratinocytes of p107/p130-double-null mice epidermis. In addition, we observed a decreased number of hair follicles and a clear developmental delay in hair, whiskers and tooth germs. Skin grafts of p107/p130-deficient epidermis onto NOD/scid mice showed altered differentiation and hyperproliferation of the interfollicular keratinocytes, thus demonstrating that the absence of p107 and p130 results in the deficient control of differentiation in keratinocytes in a cell-autonomous manner. Besides normal hair formation, follicular cysts, misoriented and dysplastic follicles, together with aberrant hair cycling, were also observed in the p107/p130 skin transplants. Finally, the hair abnormalities in p107/p130-null skin were associated with altered Bmp4-dependent signaling including decreased DeltaNp63 expression. These results indicate an essential role for p107 and p130 in the epithelial-mesenchimal interactions.  相似文献   

12.
13.
The Sonic Hedgehog (Shh) signalling pathway plays a central role in the development of the skin and hair follicle and is a major determinant of skin tumorigenesis, most notably of basal cell carcinoma (BCC). Various mouse models involving either ablation or overexpression of key members of the Shh signalling pathway display a range of skin tumours. To further examine the role of Shh in skin development, we have overexpressed Shh in a subset of interfollicular basal cells from 12.5 dpc under the control of the human keratin 1 (HK1) promoter. The HK1-Shh transgenic mice display a range of skin anomalies, including highly pigmented inguinal lesions and regions of alopecia. The most striking hair follicle phenotype is a suppression in embryonic follicle development between 14.0 and 19.0 dpc, resulting in a complete absence of guard, awl, and auchene hair fibres. These data indicate that alternative signals are responsible for the development of different hair follicles and point to a major role of Shh signalling in the morphogenesis of guard, awl, and auchene hair fibres. Through a comparison with other mouse models, the characteristics of the HK1-Shh transgenic mice suggest that the precise timing and site of Shh expression are key in dictating the resultant skin and tumour phenotype.  相似文献   

14.
15.
To understand the role Fgf signalling in skin and hair follicle development, we analysed the phenotype of mice deficient for Fgfr2-IIIb and its main ligand Fgf10. These studies showed that the severe epidermal hypoplasia found in mice null for Fgfr2-IIIb is caused by a lack of the basal cell proliferation that normally results in a stratified epidermis. Although at term the epidermis of Fgfr2-IIIb null mice is only two to three cells thick, it expresses the classical markers of epidermal differentiation and establishes a functional barrier. Mice deficient for Fgf10 display a similar but less severe epidermal hypoplasia. By contrast, Fgfr2-IIIb-/-, but not Fgf10-/-, mice produced significantly fewer hair follicles, and their follicles were developmentally retarded. Following transplantation onto nude mice, grafts of Fgfr2-IIIb-/- skin showed impaired hair formation, with a decrease in hair density and the production of abnormal pelage hairs. Expression of Lef1, Shh and Bmp4 in the developing hair follicles of Fgfr2-IIIb-/- mice was similar to wild type. These results suggest that Fgf signalling positively regulates the number of keratinocytes needed to form a normal stratified epidermis and to initiate hair placode formation. In addition, Fgf signals are required for the growth and patterning of pelage hairs.  相似文献   

16.
In the present work, we labeled human epidermal keratinocytes and dermal papilla cells in order to study their behavior after intradermal transplantation. The cells were transduced by lentiviral vectors that bore a marker gene that encodes green fluorescent protein (copGFP) or red fluorescent protein (DsRed). A portion of the transgene expressing cells was evaluated by flow cytometry. The proposed genetic constructions have allowed one to achieve high efficiency (>95%) of the transduction of hair follicle cells. The in vitro transduced cells were injected under epidermis of human skin fragments, after which these fragments were transplanted under the skin of immunodeficient mice. The injected epidermal keratinocytes were found mainly in hair follicles and partially in the zone of interfollicular epidermis, while dermal papilla cells were found in the papilla of the derma. The results of the present study have shown that the chosen genetic constructions obtained based on human immunodeficiency lentivirus are capable of the effective and stable transduction of human skin cells. The injected cells survived and were found in the corresponding skin structures.  相似文献   

17.
18.
The fate of interfollicular epidermis keratinocytes which filled the hair follicles bursas of collagen dermis framework was investigated in the autotransplantation experiment. Collagen dermis framework was prepared from the skin flap. Interfollicular epidermis was detached with the help of suction method and transferred to the collagen dermis framework surface which was placed previously on the full thickness skin defect surface. It was established that in this environment keratinocytes not only developed, but some of them migrated into the hair follicle bursas cavities. It resulted in the follicular-like structures formation, cell elements of which differentiated in the manner characteristic of interfollicular epidermis. However, in spite of the fact that the epidermal cells partially retained their proliferating ability, ingrowing would completely disappear by the 15th to 20th day after the transplantation.  相似文献   

19.
20.
Delayed wound healing in keratin 6a knockout mice   总被引:7,自引:0,他引:7       下载免费PDF全文
Keratin 6 (K6) expression in the epidermis has two components: constitutive expression in the innermost layer of the outer root sheath (ORS) of hair follicles and inducible expression in the interfollicular epidermis in response to stressful stimuli such as wounding. Mice express two K6 isoforms, MK6a and MK6b. To gain insight into the functional significance of these isoforms, we generated MK6a-deficient mice through mouse embryonic stem cell technology. Upon wounding, MK6a was induced in the outer ORS and the interfollicular epidermis including the basal cell layer of MK6a(+/+) mice, whereas MK6b induction in MK6a(-/-) mice was restricted to the suprabasal layers of the epidermis. After superficial wounding of the epidermis by tape stripping, MK6a(-/-) mice showed a delay in reepithelialization from the hair follicle. However, the healing of full-thickness skin wounds was not impaired in MK6a(-/-) animals. Migration and proliferation of MK6a(-/-) keratinocytes were not impaired in vitro. Furthermore, the migrating and the proliferating keratinocytes of full-thickness wounds in MK6a(-/-) animals expressed neither MK6a nor MK6b. These data indicate that MK6a does not play a major role in keratinocyte proliferation or migration but point to a role in the activation of follicular keratinocytes after wounding. This study represents the first report of a keratin null mutation that results in a wound healing defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号