首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Sixty-four Aspergillus isolates, 54 of which originated from food fermentations, and 18 Aspergillus reference strains were identified and screened for the presence of aflatoxin genes aflR and omt-1. Among the Koji moulds, not only A. oryzae but also A. flavus strains were found. Furthermore, 27% of A. oryzae and 93% of A. flavus strains lacked either aflR or both aflR- and omt-1. A selection of 29 strains was also checked for the presence of pksA and nor-1. This revealed large deletions in the aflatoxin gene cluster of some strains. The hybridisation patterns also suggested a polarity in the deletion events, originating in the vicinity of pksA and extending towards omt-1. Other strains exhibited BamHI restriction fragment length polymorphisms (RFLPs) for either aflR or for aflR and omt-1. All aflR and/or omt-1 deletion strains turned out to be unable to produce aflatoxin. The RFLP-carrying strains either produced only traces of aflatoxin or none at all. In 73% of the A. oryzae strains, no apparent deletions were detected with the aflR and omt-1 probes. Nevertheless, after incubation in aflatoxin-inducing media, no aflatoxin B1 production could be detected in those A. oryzae strains.  相似文献   

2.
3.
An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an O-methylsterigmatocystin-accumulating strain, A. parasiticus SRRC 2043, with a 5.5-kb HindIII-XbaI DNA fragment containing apa-2 resulted in overproduction of all aflatoxin pathway intermediates analyzed. Specific enzyme activities associated with the conversion of norsolorinic acid and sterigmatocystin were increased approximately twofold. The apa-2 gene was found to complement an A. flavus afl-2 mutant strain for aflatoxin production, suggesting that apa-2 is functionally homologous to afl-2. Comparison of the A. parasiticus apa-2 gene DNA sequence with that of the A. flavus afl-2 gene (G. A. Payne, G. J. Nystorm, D. Bhatnagar, T. E. Cleveland, and C. P. Woloshuk, Appl. Environ. Microbiol. 59:156-162, 1993) showed that they shared > 95% DNA homology. Physical mapping of cosmid subclones placed apa-2 approximately 8 kb from ver-1.  相似文献   

4.
Production of aflatoxins (AF) by Aspergillus flavus and A. parasiticus is known to occur only at acidic pH. Although typical A. flavus isolates produced more AF as the external pH became increasingly acidic, an atypical strain from West Africa produced less. The lower AF production was not well correlated with decreases in expression of the aflatoxin pathway regulatory gene, aflR, or of two other biosynthesis genes.  相似文献   

5.
6.
7.
8.
9.
10.
11.
An unusual mutation at the afl-1 locus, affecting aflatoxin biosynthesis in Aspergillus flavus 649, was investigated. The inability of strain 649 to produce aflatoxin was found to be the result of a large (greater than 60 kb) deletion that included a cluster of aflatoxin biosynthesis genes. Diploids formed by parasexual crosses between strain 649 and the aflatoxigenic strain 86 did not produce aflatoxin, indicating the dominant nature of the afl-1 mutation in strain 649. In metabolite feeding experiments, the diploids did not convert three intermediates in the aflatoxin pathway to aflatoxin. Northern (RNA blot) analysis of the diploids grown in medium conducive for aflatoxin production indicated that the aflatoxin pathway genes nor1, ver1, and omt1 were not expressed; however, there was low-level expression of the regulatory gene aflR. Pulsed-field electrophoresis gels indicated a larger (6 Mb) chromosome in strain 649 than the apparently homologous (4.9 Mb) chromosome in strain 86. The larger chromosome in strain 649 suggests that a rearrangement occurred in addition to the deletion. From these data, we proposed that a trans-sensing mechanism in diploids is responsible for the dominant phenotype associated with the afl-1 locus in strain 649. Such a mechanism is known in Drosophila melanogaster but has not been described for fungi.  相似文献   

12.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Strains of A. flavus that are non-aflatoxigenic (i.e., incapable of secreting aflatoxins) have proven effective in controlling contamination by these aflatoxin producing species in the field. In the present study, a non-aflatoxigenic A. flavus strain, GD-3, was isolated from a peanut field in Guangdong Province, China. Polymerase chain reaction (PCR) analysis showed that 12 aflatoxin biosynthesis genes (aflT, pksA, nor-1, fas-2, fas-1, aflR, aflJ, adhA, estA, norA, ver-1 and verA) were deleted in GD-3. Co-inoculation with a toxigenic strain, GD-15, at the ratio of 1:10, 1:1 or 10:1 (GD-3:GD-15), showed that GD-3 was capable of reducing detectable aflatoxin levels on three different substrates. This reduction ranged from 33% to 99% and correlated with competitor ratio. These results demonstrated that GD-3 was successful at reducing aflatoxin contamination and showed promise as a potential agent of biocontrol for local farmers.  相似文献   

13.
Aflatoxin contamination of foods and feeds is a world-wide agricultural problem. Aflatoxin production requires expression of the biosynthetic pathway regulatory gene, aflR, which encodes a Cys6Zn2-type DNA-binding protein. Homologs of aflR from Aspergillus nomius, bombycis, parasiticus, flavus, and pseudotamarii were compared to investigate the molecular basis for variation among aflatoxin-producing taxa in the regulation of aflatoxin production. Variability was found in putative promoter consensus elements and coding region motifs, including motifs involved in developmental regulation (AbaA, BrlA), regulation of nitrogen source utilization (AreA), and pH regulation (PacC), and in coding region PEST domains. Some of these elements may affect expression of aflJ, a gene divergently transcribed from aflR, that also is required for aflatoxin accumulation. Comparisons of phylogenetic trees obtained with either aligned aflR intergenic region sequence or coding region sequence and the observed divergence in regulatory features among the taxa provide evidence that regulatory signals for aflatoxin production evolved to respond to a variety of environmental stimuli under differential selective pressures. Phylogenetic analyses also suggest that isolates currently assigned to the A. flavus morphotype SBG represent a distinct species and that A. nomius is a diverse paraphyletic assemblage likely to contain several species.  相似文献   

14.
AIMS: Three conventional methods and a multiplex PCR procedure with a set of four primers (Quadruplex-PCR) were used to differentiate between aflatoxin-producing and non-producing strains of the Aspergillus flavus group. METHODS AND RESULTS: By combining sets of primers for aflR, nor-1, ver-1 and omt-A genes of the aflatoxin biosynthetic pathway, Quadruplex-PCR showed that aflatoxinogenic strains gave a quadruplet pattern, indicating the presence of all the genes involved in the aflatoxin biosynthetic pathway which encode for functional products. Non-aflatoxinogenic strains gave varying results with one, two, three or four banding patterns. A banding pattern in three non-aflatoxinogenic strains resulted in non-differentiation between these and aflatoxinogenic strains. CONCLUSION AND SIGNIFICANCE AND IMPACT OF THE STUDY: Because conventional methods are time-consuming, further studies are needed to develop a rapid and objective technique that permits complete differentiation between aflatoxin-producing and non-producing strains of the A. flavus group.  相似文献   

15.
The nor-1 gene in the filamentous fungus Aspergillus parasiticus encodes a ketoreductase involved in aflatoxin biosynthesis. To study environmental influences on nor-1 expression, we generated plasmid pAPGUSNNB containing a nor-1 promoter-beta-glucuronidase (GUS) (encoded by uidA) reporter fusion with niaD (encodes nitrate reductase) as a selectable marker. niaD transformants of A. parasiticus strain NR-1 (niaD) carried pAPGUSNNB integrated predominantly at the nor-1 or niaD locus. Expression of the native nor-1 and nor-1::GUS reporter was compared in transformants grown under aflatoxin-inducing conditions by Northern and Western analyses and by qualitative and quantitative GUS activity assays. The timing and level of nor-1 promoter function with pAPGUSNNB integrated at nor-1 was similar to that observed for the native nor-1 gene. In contrast, nor-1 promoter activity in pAPGUSNNB and a second nor-1::GUS reporter construct, pBNG3.0, was not detectable when integration occurred at niaD. Because niaD-dependent regulation could account for the absence of expression at niaD, a third chromosomal location was analyzed using pAPGUSNP, which contained nor-1::GUS plus pyrG (encodes OMP decarboxylase) as a selectable marker. GUS expression was detectable only when pAPGUSNP integrated at nor-1 and was not detectable at pyrG, even under growth conditions that required pyrG expression. nor-1::GUS is regulated similarly to the native nor-1 gene when it is integrated at its homologous site within the aflatoxin gene cluster but is not expressed at native nor-1 levels at two locations outside of the aflatoxin gene cluster. We conclude that the GUS reporter system can be used effectively to measure nor-1 promoter activity and that nor-1 is subject to position-dependent regulation in the A. parasiticus chromosome.  相似文献   

16.
Aflatoxins are extremely potent carcinogens produced by Aspergillus flavus and Aspergillus parasiticus. Cloning of genes in the aflatoxin pathway provides a specific approach to understanding the regulation of aflatoxin biosynthesis and, subsequently, to the control of aflatoxin contamination of food and feed. This paper reports the isolation of a gene involved in aflatoxin biosynthesis by complementation of an aflatoxin-nonproducing mutant with a wild-type genomic cosmid library of A. flavus. Strain 650-33, blocked in aflatoxin biosynthesis at the afl-2 allele, was complemented by a 32-kb cosmid clone (B9), resulting in the production of aflatoxin. The onset and profile of aflatoxin accumulation was similar for the transformed strain and the wild-type strain (NRRL 3357) of the fungus, indicating that the integrated gene is under the same control as in wild-type strains. Complementation analyses with DNA fragments from B9 indicated that the gene resides within a 2.2-kb fragment. Because this gene complements the mutated afl-2 allele, it was designated afl-2. Genetic evidence obtained from a double mutant showed that afl-2 is involved in aflatoxin biosynthesis before the formation of norsolorinic acid, the first stable intermediate identified in the pathway. Further, metabolite feeding studies with the mutant, transformed, and wild-type cultures and enzymatic activity measurements in cell extracts of these cultures suggest that afl-2 regulates gene expression or the activity of other aflatoxin pathway enzymes. This is the first reported isolation of a gene for aflatoxin biosynthesis in A. flavus.  相似文献   

17.
18.
19.
20.
The Aspergillus parasiticus aflR gene, a gene that may be involved in the regulation of aflatoxin biosynthesis, encodes a putative zinc finger DNA-binding protein. PCR and sequencing were used to examine the presence of aflR homologs in other members of Aspergillus Section Flavi. The predicted amino acid sequences indicated that the same zinc finger domain, CTSCASSKVRCTKEKPACARCIERGLAC, was present in all of the Aspergillus sojae, Aspergillus flavus, and Aspergillus parasiticus isolates examined and in some of the Aspergillus oryzae isolates examined. Unique base substitutions and a specific base deletion were found in the 5' untranslated and zinc finger region; these differences provided distinct fingerprints. A. oryzae and A. flavus had the T-G-A-A-X-C fingerprint, whereas A. parasiticus and A sojae had the C-C-C-C-C-T fingerprint at the corresponding positions. Specific nucleotides at positions -90 (C or T) and -132 (G or A) further distinguished A. flavus from A. oryzae and A. parasiticus from A. sojae, respectively. A sojae ATCC 9362, which was previously designated A. oryzae NRRL 1988, was determined to be a A. sojae strain on the basis of the presence of the characteristic fingerprint, A-C-C-C-C-C-C-T. The DNAs of other members of Aspergillus Section Flavi, such as Aspergillus nomius and Aspergillus tamarii, and some isolates of A. oryzae appeared to exhibit low levels of similarity to the A. parasiticus aflR gene since low amounts of PCR products or no PCR products were obtained when DNAs from these strains were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号