首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) α-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) α-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.  相似文献   

2.
New genes in alkaloid metabolism and transport   总被引:10,自引:0,他引:10  
The biosynthetic pathway of plant alkaloids is composed of several distinct enzymes of varying substrate specificities. Homology-based cloning of candidate genes and their subsequent functional testing in heterologous expression systems are accelerating the pace at which the gene catalogues of alkaloid biosynthesis are expanding. Availability of diverse genes involved in the biosynthesis, catabolism, transport, and regulation of pharmaceutically important alkaloids should steadily advance our molecular understanding of alkaloid biology and will enable us to devise more rational strategies for metabolic engineering.  相似文献   

3.
Studies with purified chloroplasts of Lupinus polyphyllus LINDL. leaflets indicate that the first two enzymes of quinolizidine alkaloid biosynthesis, lysine decarboxylase and 17-oxosparteine synthase, are localized in the chloroplast stroma. Thus, both enzymes share the same subcellular compartment as the biosynthetic pathway of lysine, the precursor of quinolizidine alkaloids. The activity of diaminopimelate decarboxylase, the final enzyme in lysine biosynthesis, is about two to three orders of magnitude higher than that of the enzymes of alkaloid formation.  相似文献   

4.
The genes (adc and odc) for two enzymes, arginine decarboxylase and ornithine decarboxylase involved in polyamine biosynthesis, were introduced into anther-derived calli of Datura innoxia through Agrobacterium tumefaciens. The transformed calli exhibited increased regeneration frequency as compared to control. Transgenic lines showed higher polyamine levels, mainly in the putrescine titre, and such lines also yielded a high level of the alkaloid, hyoscyamine. The results suggest that polyamines can modulate in vitro morphogenesis and polyamine biosynthetic pathway can be exploited for enhancement of polyamine-derived alkaloids of pharmaceutical importance.  相似文献   

5.
Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.  相似文献   

6.
7.
The system of pyrrolizidine alkaloids has proven to be a powerful system for studying the evolution of a biosynthetic pathway in plant secondary metabolism. Pyrrolizidine alkaloids are typical plant secondary products produced by the plant as a defense against herbivores. The first specific enzyme, homospermidine synthase, has been shown to have evolved by duplication of the gene encoding deoxyhypusine synthase, which is involved in primary metabolism. Despite the identical function of homospermidine synthase for pyrrolizidine alkaloid biosynthesis in the various plant lineages, this gene duplication has occurred several times independently during angiosperm evolution. After duplication, these gene copies diverged with respect to gene function and regulation. In the diverse plant lineages producing pyrrolizidine alkaloids, homospermidine synthase has been shown to be expressed in a variety of tissues, suggesting that the regulatory elements were recruited individually after the duplication of the structural gene. The molecular, kinetic, and expression data of this system are discussed with respect to current models of gene and pathway evolution.  相似文献   

8.
Lysine decarboxylase converts l ‐lysine to cadaverine as a branching point for the biosynthesis of plant Lys‐derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys‐derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La‐L/ODC) and identified cadaverine‐derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys‐derived alkaloids in the transgenic lines. Moreover, we found several cadaverine‐derived metabolites specifically detected in the transgenic lines compared with the non‐transformed control. Among these, three specific metabolites were identified and confirmed as 5‐aminopentanal, 5‐aminopentanoate and δ‐valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope‐labeled [α‐15N]‐ or [ε‐15N]‐l ‐lysine. Our results show similar 15N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys‐derived alkaloid biosynthesis.  相似文献   

9.
Two centuries after the discovery of the first alkaloids, many enzymes involved in plant alkaloid biosynthesis have been identified. Nevertheless, the biosynthetic pathways for most of the plant alkaloids still remain incompletely characterised and understanding the regulatory mechanisms controlling the onset and flux of alkaloid biosynthesis is virtually inexistent. This information is however crucial to allow modelling of metabolic networks and predictive metabolic engineering. In the postgenomics era, new functional genomics tools, enabling comprehensive investigations of biological systems, are continuously emerging and are now gradually being implemented in the field of plant secondary metabolism as well. Here we discuss the advances these promising new technologies have already brought and may still bring with regard to the dissection of plant alkaloid biosynthesis. Encouraging results were obtained in alkaloid producing species such as Papaver somniferum, Catharanthus roseus and Nicotiana tabacum. Therefore we anticipate that functional genomics and the knowledge it brings along, will eventually allow a better exploitation of the plant biosynthetic machinery.  相似文献   

10.
11.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

12.
The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.  相似文献   

13.
14.
Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.  相似文献   

15.
Cell suspension cultures (cell line No 615) of Catharanthus roseus cv. Little Delicata responded to elicitor treatment by accumulating monoterpenoid indole alkaloids and phenolic compounds. The excretion of phenols into the culture medium resulted from the induction of the branch-point enzyme phenylalanine ammonia lyase. The accumulation of alkaloids, however, occurred several hours earlier than the elicitor-mediated induction of tryptophan decarboxylase through which shikimate pathway intermediates are channelled into tryptamine and related indole alkaloids. The results indicate that both pathways for phenol and indole alkaloid biosynthesis responded to elicitor treatment and that no obvious causal relationship between pathways could be deduced from this study.Abbreviations PAL phenylalanine ammonia lyase - TDC tryptophan decarboxylase Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

16.
17.
《Gene》1996,179(1):73-81
Tetrahydrobenzylisoquinoline alkaloids comprise a diverse class of secondary metabolites with many pharmacologically active members. The biosynthesis at the enzyme level of at least two tetrahydrobenzylisoquinoline alkaloids, the benzophenanthridine alkaloid sanguinarine in the California poppy, Eschscholtzia californica, and the bisbenzylisoquinoline alkaloid berbamunine in barberry, Berberis stolonifera, has been elucidated in detail starting from the aromatic amino acid (aa) l-tyrosine. In an initial attempt to develop alternate systems for the production of medicinally important alkaloids, one enzyme from each pathway (BBE, a covalently flavinylated enzyme of benzophenanthridine alkaloid biosynthesis and CYP80, a phenol coupling cytochrome P-450-dependent oxidase of bisbenzylisoquinoline alkaloid biosynthesis) has been purified to homogeneity, a partial aa sequence determined, and the corresponding cDNAs isolated with aid of synthetic oligos based on the aa sequences. The recombinant enzymes were actively expressed in Spodoptera frugiperda Sf9 cells using a baculovirus vector, purified and then characterized. Insect cell culture has proven to be a powerful system for the overexpression of alkaloid biosynthetic genes.  相似文献   

18.
Catharanthus roseus is still the only source for the powerful antitumour drugs vinblastine and vincristine. Some other pharmaceutical compounds from this plant, ajmalicine and serpentine are also of economical importance. Although C. roseus has been studied extensively and was subject of numerous publications, a full characterization of its alkaloid pathway is not yet achieved. Here we review some of the recent work done on this plant. Most of the work focussed on early steps of the pathway, particularly the discovery of the 2-C-methyl-d-erythritol 4-phosphate (MEP)-pathway leading to terpenoids. Both mevalonate and MEP pathways are utilized by plants with apparent cross-talk between them across different compartments. Many genes of the early steps in Catharanthus alkaloid pathway have been cloned and overexpressed to improve the biosynthesis. Research on the late steps in the pathway resulted in cloning of several genes. Enzymes and genes involved in indole alkaloid biosynthesis and various aspects of their localization and regulation are discussed. Much progress has been made at alkaloid regulatory level. Feeding precursors, growth regulators treatments and metabolic engineering are good tools to increase productivity of terpenoid indole alkaloids. But still our knowledge of the late steps in the Catharanthus alkaloid pathway and the genes involved is limited.  相似文献   

19.
Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA‐seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern‐matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ‐aminobutyrate transaminase; together they produce verazine from cholesterol.  相似文献   

20.
Transformed root cultures of Datura stramonium, competent in tropane-alkaloid biosynthesis, have been treated with exogenous plant growth regulators. It was found that combinations of -naphthalene-acetic acid, kinetin (N6-furfurylaminopurine) and 2,4-dichlorophenoxyacetic acid induced de-differentiation, causing both the rooty phenotype and the hyoscyamine-biosynthetic capacity to be lost. Alkaloid biosynthesis disappeared rapidly and prior to the loss of morphological integrity. It was observed that the enzymes ornithine decarboxylase (EC 4.1.1.17), arginine decarboxylase (EC 4.1.1.19) and N-methylputrescine oxidase did not show the increase in level normally associated with subculturing the roots. The level of putrescine N-methyltransferase (EC 2.1.1.53) activity, the first enzyme fully committed to hyoscyamine biosynthesis, rapidly declined, about 80% being lost from the roots within 12h. This activity, although showing some temporary restoration, declined further after a few days, and was totally absent from fully dispersed cultures. N-Methylputrescine oxidase persisted at a low level. Following sub-culture of established de-differentiated lines to plant-growth-regulator-free medium, limited root regeneration occurred. The roots formed showed renewed competence in alkaloid biosynthesis and putrescine N-methyltransferase and N-methylputrescine oxidase activities were restored to their normal levels. The relationship between the morphological state and alkaloid-biosynthetic capacity of the cultures is discussed in relation to the overall control of alkaloid biosynthesis.Abbreviations ADC arginine decarboxylase - FW fresh weight - MPO N-methylputrescine oxidase - NAA -naphthalineacetic acid - ODC ornithine decarboxylase - pgr plant growth regulator - PMT putrescine N-methyltransferase We are most grateful to Abigael Peerless and Bridget Chapman for assistance with various part of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号