首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pyrrolizidine alkaloid biosynthesis,evolution of a pathway in plant secondary metabolism
Authors:Dietrich Ober  Elisabeth Kaltenegger
Institution:Biochemische Ökologie und Molekulare Evolution, Botanisches Institut und Botanischer Garten, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Abstract:The system of pyrrolizidine alkaloids has proven to be a powerful system for studying the evolution of a biosynthetic pathway in plant secondary metabolism. Pyrrolizidine alkaloids are typical plant secondary products produced by the plant as a defense against herbivores. The first specific enzyme, homospermidine synthase, has been shown to have evolved by duplication of the gene encoding deoxyhypusine synthase, which is involved in primary metabolism. Despite the identical function of homospermidine synthase for pyrrolizidine alkaloid biosynthesis in the various plant lineages, this gene duplication has occurred several times independently during angiosperm evolution. After duplication, these gene copies diverged with respect to gene function and regulation. In the diverse plant lineages producing pyrrolizidine alkaloids, homospermidine synthase has been shown to be expressed in a variety of tissues, suggesting that the regulatory elements were recruited individually after the duplication of the structural gene. The molecular, kinetic, and expression data of this system are discussed with respect to current models of gene and pathway evolution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号