首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a devastating disease in Henan Province, of the main rapeseed production areas in China. Fluazinam belongs to the broad‐spectrum phenylpyridinamine fungicides, which have high activity in inhibiting the mycelial growth of S. sclerotiorum. In this study, 191 field isolates were obtained from different oilseed rape fields in Henan Province, before being exposed to fluazinam in 2015. The baseline sensitivity of S. sclerotiorum to fluazinam was established. The effective concentration for 50% inhibition of mycelial growth (EC50) ranged from 0.0019 to 0.0337 μg/ml, and the mean EC50 value was 0.0084 ± 0.0055 μg/ml. The range of the frequency distribution was narrow. The results of a cross‐resistance assay revealed no cross‐resistance between fluazinam and carbendazim, dimethachlone, boscalid or fludioxonil. Field efficacy tests showed that the control efficacies of fluazinam (50% WG) applied at 150, 225 and 300 g ai ha?1 were 67%, 73% and 88%, respectively. In contrast, the control efficacies of boscalid (50% WG) and carbendazim (50% WP) applied at 225 and 1,500 g ai ha?1 were 71% and 52%, respectively.  相似文献   

4.
5.
Field resistances against Sclerotinia rot (SR) (Sclerotinia sclerotiorum) were determined in 52 Chinese genotypes of Brassica oleracea var. capitata, 14 Indian Brassica juncea genotypes carrying wild weedy Brassicaceae introgression(s) and four carrying B‐genome introgression, 22 Australian commercial Brassica napus varieties, and 12 B. napus and B. juncea genotypes of known resistance. All plants were individually inoculated by securing an agar disc from a culture of S. sclerotiorum growing on a glucose‐rich medium to the stem above the second internode with Parafilm tape. Mean stem lesion length across tested genotypes ranged from <1 to >68 mm. While there was considerable diversity within the germplasm sets from each country, overall, 65% of the B. oleracea var. capitata genotypes from China showed the highest levels of stem resistance, a level comparable with the highest resistance ever recorded for oilseed B. napus or B. juncea from China or Australia. One Indian B. juncea line carrying weedy introgression displayed a significant level of both stem and leaf resistance. However, the vast majority of commercial Australian oilseed B. napus varieties fell within the most susceptible 40% of genotypes tested for stem disease. There was no correlation between expressions of stem versus leaf resistance, suggesting their independent inheritance. A few Chinese B. oleracea var. capitata genotypes that expressed combined extremely high‐level stem (≤1 mm length) and leaf (≤0.5 mean number of infections/plant) resistance will be particularly significant for developing new SR‐resistant horticultural and oilseed Brassica varieties.  相似文献   

6.
7.
SsITL, a secretory protein of the necrotrophic phytopathogen Sclerotinia sclerotiorum, was previously reported to suppress host immunity at the early stages of infection. However, the molecular mechanism that SsITL uses to inhibit plant defence against S. sclerotiorum has not yet been elucidated. Here, we report that SsITL interacted with a chloroplast-localized calcium-sensing receptor, CAS, in chloroplasts. We found that CAS is a positive regulator of the salicylic acid signalling pathway in plant immunity to S. sclerotiorum and CAS-mediated resistance against S. sclerotiorum depends on Ca2+ signalling. Furthermore, we showed that SsITL could interfere with the plant salicylic acid (SA) signalling pathway and SsITL-expressing transgenic plants were more susceptible to S. sclerotiorum. However, truncated SsITLs (SsITL-NT1 or SsITL-CT1) that lost the ability to interact with CAS do not affect plant resistance to S. sclerotiorum. Taken together, our findings reveal that SsITL inhibits SA accumulation during the early stage of infection by interacting with CAS and then facilitating the infection by S. sclerotiorum.  相似文献   

8.
Canola (Brassica napus L.) is an agriculturally and economically important crop in Canada, and its growth and yield are frequently influenced by fungal pathogens. Sclerotinia sclerotiorum is among those fungal pathogens and causes stem rot disease in B. napus whereas it has been reported that Brassica carinata is moderately tolerant to S. sclerotiorum. Jasmonic acid/ethylene (JA/ET) and salicylic acid (SA) are phytohormones that are known to be involved in plant disease responses. To investigate the defense signaling cascades involved in the interaction of B. napus and B. carinata with S. sclerotiorum, we examined the expression of five orthologs of B. napus genes involved in JA/ET or SA signaling pathways using quantitative RT-PCR. Our results indicated that there are differences in the timing of JA/ET and SA signaling pathways between B. napus and B. carinata. Our results in these two Brassica species also support previous observations that necrotrophic pathogens trigger JA/ET signaling in response to infection. Finally, we observed that transgenic canola expressing 1-aminocyclopropane-1-carboxylate-deaminase producing low levels of ET was relatively more susceptible to S. sclerotiorum than its wild-type counterpart, suggesting that ET inhibits S. sclerotiorum-induced symptom development.  相似文献   

9.
10.
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time‐resolved automated disease phenotyping pipeline enabling high‐throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide‐binding site leucine‐rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip‐0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time‐resolved image‐based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.  相似文献   

11.
The proper characterization of individual is a basic stage in population genetic studies. In Sclerotinia sclerotiorum, genetic uniformity of an individual can be obtained by isolation of single ascospore; however, hyphal‐tip isolates are commonly used in genetic studies. The aim of this study was to assess whether hyphal‐tip isolates of S. sclerotiorum can be used as surrogate of monoascosporic (monosporic) isolates. Twenty‐eight isolates of S. sclerotiorum were collected from common bean plants with white mold symptoms and were purified by hyphal‐tip or single ascospore. The correspondence between hyphal‐tip and monosporic isolates was assessed through the allelic composition at 10 microsatellite (SSR) loci of the isolates obtained by both methods. For the SSR loci comprised of dinucleotide repeats in 92% of the cases, the difference (di) between the amplicon size values for hyphal‐tip and monosporic isolates was no more than one base pair. For the loci comprised of tetra or pentanucleotide repeats in 89% of the cases, di was no more than one base pair. The same allelic profile was found for hyphal‐tip or single ascospore isolates of S. sclerotiorum. When monosporic isolates cannot be easily obtained, hyphal‐tip can safeguard the genotypic identity of S. sclerotiorum isolates.  相似文献   

12.
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most important diseases in oilseed rape‐growing areas of China. To determine the frequency of resistance of field isolates of S. sclerotiorum to carbendazim and dimethachlone, a total of 556 isolates from 10 different regions of Henan Province were obtained between 2015 and 2016. The frequency of isolates with a high‐resistance phenotype and a moderate‐resistance phenotype to carbendazim was 69.2% and 10.8%, respectively. However, S. sclerotiorum isolates resistant to dimethachlone were not detected. The baseline sensitivity of S. sclerotiorum to dimethachlone was distributed as a unimodal curve with a mean EC50 value of 0.39 ± 0.09 μg ml?1 for the inhibition of mycelial growth. Four dimethachlone‐resistant mutants were obtained from 20 wild‐type isolates induced by exposure to increasing concentrations of the fungicide in vitro. The mutants showed high levels of resistance to dimethachlone, with resistance factors that ranged from 179 to 323. Positive cross‐resistance occurred between dimethachlone and procymidone, iprodione, and fludioxonil; however, no cross‐resistance was observed for carbendazim and boscalid. The fitness of the dimethachlone‐resistant mutants was significantly lower than that of the wild‐type isolates, as measured by mycelial growth, hyphal dry weight, sclerotium number and dry weight, and pathogenicity. Additionally, based on osmotic tests, the inhibition of mycelial growth caused by NaCl applied at different concentrations was significantly higher for the dimethachlone‐resistant mutants than for their wild‐type parents.  相似文献   

13.
This paper reports the isolation from soil of Penicillium strain PY-1 with strong antagonistic activity against plant pathogenic fungi. On the basis of its morphological characteristics and the sequence of the ITS region, strain PY-1 was identified as P. oxalicum. Strain PY-1 produces antifungal substances that suppress the mycelial growth of Sclerotinia sclerotiorum and many other plant pathogenic fungi tested; the highest antagonistic activity was detected at 72 h when cultured in a 250-ml flask containing 80 ml potato dextrose broth. Compared with carbendazim, the relative activity of the antifungal substances produced by strain PY-1 was approximately 4 μg active ingredient (a.i.) per milliliter. The antifungal substances were extracted with ethyl acetate and further separated by high-performance liquid chromatography (HPLC); at least two active components were discovered. The ability to control plant disease with strain PY-1 was confirmed with S. sclerotiorum, a widespread pathogenic fungus that attacks rapeseed (Brassica napus) and other plants. Spores (106 or 107 ml−1) and filtrate (tenfold diluted or undiluted) of strain PY-1 could significantly suppress infection and/or the extent of infection by S. sclerotiorum of plants at seven-true-leaves stage. The potential of strain PY-1 for identifying new antibiotics to control fungal disease and for biological control of plant disease, for example oilseed rape stem rot, is discussed.  相似文献   

14.
Sclerotinia rot is a fungal disease caused by Sclerotinia sclerotiorum (Lib.) de Bary, which has severely reduced rapeseed production worldwide. Polygalacturonase-inhibiting proteins (PIGPs) inhibit the activity of polygalacturonases, which are secreted during fungal infection in plants. This study investigated the function of the polygalacturonase-inhibitor gene 2 (PGIP2) in sclerotinia rot resistance. The PGIP2 was successfully expressed in a prokaryotic system, and recombinant PGIP2 protein, purified after enterokinase treatment to remove tag peptide, inhibited S. sclerotiorum PG activity in vitro. PGIP2 was overexpressed in the susceptible Brassica napus cultivar 98c40 via Agrobacterium-mediated transformation. After inoculation with S. sclerotiorum mycelia, the transgenic rapeseed demonstrated greatly reduced leaf damage, as compared with their non-transgenic plants. Therefore, the PGIP2 encodes a functional protein and would be a candidate gene for enhancing Sclerotinia rot resistance.  相似文献   

15.
Rapeseed (Brassica napus L.) is one of the most important economic crops worldwide, and Sclerotinia sclerotiorum is the most dangerous disease that affects its yield greatly. Lipid transfer protein (LTP) has broad-spectrum anti-bacterial and fungal activities. In this study, B. napus was transformed using Agrobacterium tumefaciens harboring the plasmid-containing LTP gene to study its possible capability of increasing plant’s resistance. First, we optimized the petiole genetic transformation system by adjusting the days of explants, bacterial concentrations, ratio of hormones, and cultivating condition. Second, we obtained 8 positive plants by PGR analysis of T0 generation. The PGR results of T1 generation were positive, indicating that the LTP gene had been integrated into B. napus. Third, T1 transgenic plants inoculated by detached leaves with mycelia of S. sclerotiorum showed better disease resistance than non-transformants. Oxalic acid belongs to secondary metabolites of S. sclerotiorum, and several studies have demonstrated that the resistance of rapeseed to oxalic acid is significantly consistent with its resistance to S. sclerotiorum. The result from the seed germination assay showed that when T1 seeds were exposed to oxalic acid stress, their germination rate was evidently higher than that of non-transformant seeds. In addition, we measured some physiological changes in T1 plants and control plants under oxalic acid stress. The results showed that T1 transgenic plants had lower malondialdehyde (MDA) content, higher super oxide dismutase (SOD), and peroxidase (POD) activities than non-transformants, whereas disease resistance was related to low MDA content and high SOD and POD activities.  相似文献   

16.
Sclerotinia stem rot (SSR) caused by the fungus Sclerotinia sclerotiorum has been an increasing threat to oilseed rape (Brassica napus L.) cultivation. Efficient and environment—friendly treatments are much needed. Here we focus on microbial control. The Pseudomonas fluorescens P13 that was isolated from oilseed rape cultivation soil, proved to be a useful biocontrol strain for application. Morphology, physiological and biochemical tests and 16S rDNA analysis demonstrated that it was P. fluorescens P13 and that it had a broad antagonistic spectrum, significantly lessening the mycelial growth of S. sclerotiorum by 84.4% and suppressing sclerotial formation by 95–100%. Scanning electron microscopy studies attested that P13 deformed S. sclerotiorum mycelia when they were cultured together. P13 did not produce chitinase but did produce hydrogen cyanide (HCN) which was likely one of the antagonistic mechanisms. The density of P13 remained at a high level (≥106 CFU/ml) during 5 weeks in the rhizosphere soil and roots. P13 reduced SSR severity at least by 59% in field studies and also promoted seedling growth (p<0.05) at the seedling stage. From these data, our work provided evidence that P13 could be a good alternative biological resource for biocontrol of S. sclerotiorum.  相似文献   

17.
Ferulate-5-hydroxylase is a key enzyme involved in the conversion of the guaiacyl monolignol to the syringyl monolignol in angiosperms. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease. Stem rot caused by the fungus Sclerotinia sclerotiorum in Brassica napus causes severe losses in its production. To date, there is no information about the effect of the lignin monomer ratio on the resistance to S. sclerotiorum in B. napus. Four dominantly expressed ferulate-5-hydroxylase genes were concertedly knocked out by CRISPR/Cas9 in B. napus, and three mutant lines were generated. The S/G lignin compositional ratio was decreased compared to that of the wild type based on the results of M?ule staining and 2D-NMR profiling in KO-7. The resistance to S. sclerotiorum in stems and leaves increased for the three f5h mutant lines compared with WT. Furthermore, we found that the stem strength of f5h mutant lines was significantly increased. Overall, we demonstrate for the first time that decreasing the S/G ratio by knocking out of the F5H gene improves S. sclerotiorum resistance in B. napus and increases stem strength.  相似文献   

18.
19.
Dong X  Ji R  Guo X  Foster SJ  Chen H  Dong C  Liu Y  Hu Q  Liu S 《Planta》2008,228(2):331-340
Sclerotinia sclerotiorum causes a highly destructive disease in oilseed rape (Brassica napus). Oxalic acid (OA) secreted by the pathogen is a key pathogenicity factor. Oxalate oxidase (OXO) can oxidize OA into CO2 and H2O2. In this study, we show that transgenic oilseed rape (sixth generation lines) constitutively expressing wheat (Triticum aestivum) OXO displays considerably increased OXO activity and enhanced resistance to S. sclerotiorum (with up to 90.2 and 88.4% disease reductions compared with the untransformed parent line and a resistant control, respectively). Upon application of exogenous OA, the pH values in transgenic plants were maintained at levels slightly lower than 5.58 measured prior to OA treatment, whereas the pH values in untransformed plants decreased rapidly and were markedly lower than 5.63 measured prior to OA treatment. Following pathogen inoculation, H2O2 levels were higher in transgenic plants than in untransformed plants. These results indicate that the enhanced resistance of the OXO transgenic oilseed rape to Sclerotinia is probably mediated by OA detoxification. We believe that enhancing the OA metabolism of oilseed rape in this way will be an effective strategy for improving resistance to S. sclerotiorum. Xiangbai Dong and Ruiqin Ji contributed equally to this paper.  相似文献   

20.
Brassica napus (AnAnCnCn) is an important worldwide oilseed crop, but it is a young allotetraploid with a short evolutionary history and limited genetic diversity. To significantly broaden its genetic diversity and create a novel heterotic population for sustainable rapeseed breeding, this study reconstituted the genome of B. napus by replacing it with the subgenomes from 122 accessions of Brassica rapa (ArAr) and 74 accessions of Brassica carinata (BcBcCcCc) and developing a novel gene pool of B. napus through five rounds of extensive recurrent selection. When compared with traditional B. napus using SSR markers and high‐throughput SNP/Indel markers through genotyping by sequencing, the newly developed gene pool and its homozygous progenies exhibited a large genetic distance, rich allelic diversity, new alleles and exotic allelic introgression across all 19 AC chromosomes. In addition to the abundant genomic variation detected in the AC genome, we also detected considerable introgression from the eight chromosomes of the B genome. Extensive trait variation and some genetic improvements were present from the early recurrent selection to later generations. This novel gene pool produced equally rich phenotypic variation and should be valuable for rapeseed genetic improvement. By reconstituting the genome of B. napus by introducing subgenomic variation within and between the related species using intense selection and recombination, the whole genome could be substantially reorganized. These results serve as an example of the manipulation of the genome of a young allopolyploid and provide insights into its rapid genome evolution affected by interspecific and intraspecific crosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号