首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
铁是大多数生物包括细菌生存的必需营养元素.对于感染宿主的致病细菌,血红素(heme/haem)可作为一种主要的铁来源.血红素转运系统在革兰氏阴性菌和革兰氏阳性菌中均有发现和鉴定,其转运机制在革兰氏阴性菌中有较为深入研究.革兰氏阴性菌血红素转运系统主要由分泌于细胞外的血红素载体(hemophore)、血红素受体、TonB ExbB ExbD复合物、ABC转运体、血红素降解蛋白和调控蛋白等结构单元组成.对参与该系统的各个蛋白结构特点以及它们之间的相互作用机制的讨论,有助于对病原菌致病机制的深入研究和抗菌新药的研发.  相似文献   

2.
铁离子是大多数细菌生存所必需的一种营养物质,但过多的铁离子会通过芬顿反应产生的活性氧对细菌造成损伤。因此,细菌通过摄取、调控、螯合、外排等机制维持体内铁离子的稳态。鸭疫里默氏杆菌(Riemerella anatipestifer)是一种最新被归类于威克斯菌科里氏杆菌属的革兰氏阴性菌。该菌主要感染禽类,参与该菌的铁离子代谢基因具有特别之处。本文对鸭疫里默氏杆菌铁离子代谢机制研究进展进行了系统总结和阐述,包括该菌的TonB系统、TonB依赖性受体、Fur蛋白及Dps蛋白等在铁离子转运、调控、螯合中的功能,以及以上蛋白在鸭疫里默氏杆菌致病中的作用,以期更全面地理解鸭疫里默氏杆菌铁代谢机制,并为进一步深入研究该菌铁离子代谢提供理论依据和参考。  相似文献   

3.
梁惠惠  冯雪  高海春 《微生物学通报》2020,47(10):3305-3317
铁元素通常以蛋白辅因子的形式参与一系列重要的生命过程,是绝大多数生命必需的营养物质。在细菌生命过程中,一方面铁短缺是必须克服的严峻挑战,另一方面铁过量又会危及生命。铁的这种二元性质要求细菌必须严格保持体内的铁稳态。当前革兰氏阴性菌铁稳态的作用模式及理解主要基于肠道细菌大肠杆菌的长期探索成果。近年来,在环境细菌中开展的相关研究揭示了革兰氏阴性菌的铁稳态机制存在出乎意料的多样性:细菌中铁稳态相关的生物途径及组成蛋白、关键调控系统的生理影响以及铁稳态与其他生物过程的相互影响等方面都显示不同菌种的生存和进化特征。本综述以希瓦氏菌中的相关发现为基础,分析总结革兰氏阴性菌铁稳态重要途径及其组成的多样性、不同途径的相互影响以及调控因子的生理影响和调控机理等方面的研究进展和未解决的问题,以期为革兰氏阴性菌铁稳态的研究提供参考。  相似文献   

4.
陈国忠  张燕娇  陈师勇 《微生物学报》2017,57(12):1769-1777
细菌脂蛋白是细胞膜的重要组成成分,在革兰氏阴性菌的生理及致病性中扮演着重要的角色。革兰氏阴性菌中已知负责胞内脂蛋白转运的是Lol(Localization of lipoprotein)系统。该系统识别成熟脂蛋白的分泌信号,将外膜脂蛋白转运并定位于细胞外膜内侧。近年来的研究发现,跨细胞外膜进行表面展示的脂蛋白实际上在革兰氏阴性菌中广泛存在,其分泌机制开始成为研究热点。为了对革兰氏阴性菌中脂蛋白分泌机制的研究现状有一个系统全面的了解,本文概述了脂蛋白转运过程中Lol系统5个转运蛋白的功能与保守性、不同细菌中脂蛋白分泌信号的差异以及表面展示脂蛋白可能的分泌机制。  相似文献   

5.
革兰氏阴性菌血红素载体蛋白Hemophore的结构及作用机制   总被引:1,自引:1,他引:0  
血红素作为宿主体内最丰富的铁离子来源,是致病菌营养竞争的主要目标,尤其对于血红素自身合成途径部分丧失的细菌。革兰氏阴性菌血红素转运系统由血红素载体蛋白(Hemophore)、外膜血红素受体、TonB-ExbB-ExbD复合物、ABC转运体等组成。Hemophore是存在于细菌细胞膜上或分泌到胞外环境中的一种蛋白。它能从宿主血红素结合蛋白中捕获血红素并将其传递给外膜受体。目前,在不同革兰氏阴性菌中已发现3种类型的Hemophore,分别是HasA、HxuA和HmuY型。本文将详细描述这3种Hemophore捕获血红素及与外膜受体相互作用的机制,以期为进一步研究其他细菌血红素载体蛋白的功能及作用机制奠定基础。  相似文献   

6.
革兰氏阴性菌在生长繁殖过程中需要从外界摄取营养物质。一些小分子营养物质可以自由地通过革兰氏阴性菌的细胞膜,而一些大分子营养物质的转运需要特异性的TonB复合物依赖性的外膜受体进行转运。TonB复合物由TonB、ExbB、ExbD构成,是革兰氏阴性菌对外界营养物质主动转运过程的能量提供单位,在革兰氏阴性菌分布广泛。近年来,对TonB-ExbB-ExbD复合物的功能、结构及作用机制取得了重大研究进展,然而此复合物在不同的细菌也存在功能及作用机制上的差异。基于此背景,本文综述了TonB复合物的功能和结构研究进展,并分析了TonB复合物在革兰氏阴性菌中的分布、进化,比较了不同革兰氏阴性菌此复合物的差异,有助于进一步发现和揭示TonB复合物的新功能与作用机制。  相似文献   

7.
革兰氏阴性菌在生长繁殖过程中需要从外界摄取营养物质。一些小分子营养物质可以自由地通过革兰氏阴性菌的细胞膜,而一些大分子营养物质的转运需要特异性的TonB复合物依赖性的外膜受体进行转运。TonB复合物由TonB、ExbB、ExbD构成,是革兰氏阴性菌对外界营养物质主动转运过程的能量提供单位,在革兰氏阴性菌分布广泛。近年来,对TonB-ExbB-ExbD复合物的功能、结构及作用机制取得了重大研究进展,然而此复合物在不同的细菌也存在功能及作用机制上的差异。基于此背景,本文综述了TonB复合物的功能和结构研究进展,并分析了TonB复合物在革兰氏阴性菌中的分布、进化,比较了不同革兰氏阴性菌此复合物的差异,有助于进一步发现和揭示TonB复合物的新功能。  相似文献   

8.
为维持生长所需,革兰氏阴性菌需要从外界摄取多种营养物质。分子量小于600 Da的分子可以通过自由扩散的方式通过革兰氏阴性菌的外膜,而大分子物质则需要特殊的转运系统才能将其转运至革兰氏阴性菌的胞内。革兰氏阴性菌对大分子营养物质的识别和转运主要由TonB依赖性受体负责完成。所有革兰氏阴性菌中均有TonB依赖性受体的存在,然而不同种类的革兰氏阴性菌拥有TonB依赖性受体的数量不同且功能各异。最近研究表明,TonB依赖性受体不仅参与了铁、血红素、锰、锌、镍、维生素、碳水化合物等多种营养物质的摄取,而且参与了蛋白酶的分泌。为对TonB依赖性受体提供更为深入和系统的理解,详细介绍了目前已知的TonB依赖性受体的功能及结构,以期为更进一步探知TonB依赖性受体未知功能提供可参考依据。  相似文献   

9.
细菌脂肪酶是一类重要的工业用酶,其分泌系统有着严谨的机制。革兰阳性细菌利用Sec-转运系统使脂肪酶跨过质膜完成分泌;革兰氏阴性细菌的外泌蛋白通过Sec-转运系统、Tat-转运系统或其他机制跨越内膜后,还必须利用Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型与Ⅴ型分泌系统来完成跨外膜分泌。详细介绍细菌脂肪酶分泌主要依赖的Sec-或Tat-跨内膜的转运系统及革兰氏阴性细菌的Ⅰ型、Ⅱ型与Ⅴ型自分泌系统的3种不同分泌方式。细菌脂肪酶分泌的研究对人们认识其分泌机制,并利用基因工程的手段提高其外泌产量等具有重要的指导意义。  相似文献   

10.
细菌利用群体感应系统进行细菌间以及细菌与宿主间的交流,革兰氏阳性与阴性菌的群体感应系统差异显著,阳性菌的群体感应系统主要由寡肽类信号分子和受体蛋白组成,对细菌致病性等相关生理特性具有重要作用。就常见的革兰氏阳性菌:蜡样芽孢杆菌、枯草芽孢杆菌、金黄色葡萄球菌和肺炎链球菌的群体感应系统的基因组成、信号分子及其调控机制特点的研究进行了总结,对群体感应系统在细菌营养吸收、生物膜形成、毒力因子和孢子产生等重要生理活动的调节机制进行了重点阐述,为革兰氏阳性菌群体感应的相关研究提供了有益参考。  相似文献   

11.
In Yersinia pestis, the Yfe and Feo systems likely function to transport ferrous iron. Both FeoA and FeoB are essential for iron acquisition activity while FeoC is not. Mutations in yfe and feo had an additive effect on microaerophilic growth under iron-chelating conditions. Y. pestis cells lacking the Ybt siderophore-dependent system, the Yfe or the Feo system grow normally in J774A.1 cells. However, a double yfeAB feoB mutant was no longer able to grow in this murine macrophage cell line. This growth defect likely resulted from iron and not manganese deprivation since a yfeAB mntH mutant grew normally in J774A.1 cells. These results suggest that the Yfe and Feo systems are somewhat redundant ferrous iron transporters capable of iron acquisition during intracellular growth of the plague bacterium.  相似文献   

12.
Shigella spp. have transport systems for both ferric and ferrous iron. The iron can be taken up as free iron or complexed to a variety of carriers. All Shigella species have both the Feo and Sit systems for acquisition of ferrous iron, and all have at least one siderophore-mediated system for transport of ferric iron. Several of the transport systems, including Sit, Iuc/IutA (aerobactin synthesis and transport), Fec (ferric di-citrate uptake), and Shu (heme transport) are encoded within pathogenicity islands. The presence and the genomic locations of these islands vary considerably among the Shigella species, and even between isolates of the same species. The expression of the iron transport systems is influenced by the concentration of iron and by environmental conditions including the level of oxygen. ArcA and FNR regulate iron transport gene expression as a function of oxygen tension, with the sit and iuc promoters being highly expressed in aerobic conditions, while the feo ferrous iron transporter promoter is most active under anaerobic conditions. The effects of oxygen are also seen in infection of cultured cells by Shigella flexneri; the Sit and Iuc systems support plaque formation under aerobic conditions, whereas Feo allows plaque formation anaerobically.  相似文献   

13.
Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.  相似文献   

14.
15.
In order to establish infection, pathogenic bacteria must obtain essential nutrients such as iron. Under acidic and/or anaerobic conditions, most bacteria utilize the Feo system in order to acquire ferrous iron (Fe2+) from their host environment. The mechanism of this process, including its regulation, remains poorly understood. In this work, we have determined the crystal structure of FeoA from the nosocomial agent Klebsiella pneumoniae (KpFeoA). Our structure reveals an SH3-like domain that mediates interactions between neighboring polypeptides via hydrophobic intercalations into a Leu-rich surface ridge. Using docking of a small peptide corresponding to a postulated FeoB partner binding site, we demonstrate that KpFeoA can assume both “open” and “closed” conformations, controlled by binding at this Leu-rich ridge. We propose a model in which a “C-shaped” clamp along the FeoA surface mediates interactions with its partner protein, FeoB. These findings are the first to demonstrate atomic-level details of FeoA-based protein-protein interactions and provide a framework for testing FeoA-FeoB interactions, which could be exploited for future antibiotic developments.  相似文献   

16.
In the gammaproteobacteria, the FeoA, FeoB, and FeoC proteins constitute the Feo system, which mediates ferrous iron [Fe(II)] import. Of these Feo proteins, FeoB is an inner membrane Fe(II) transporter that is aided by the small protein FeoA. However, the role of another small protein, FeoC, has remained unknown. Here we report that the FeoC protein is necessary for FeoB protein-mediated Fe(II) uptake in Salmonella experiencing low levels of oxygen and iron. The FeoC protein was found to directly bind to the FeoB transporter, leading to high cellular levels of FeoB. Depletion of the FtsH protease enabled high levels of FeoB in the absence of FeoC, suggesting that the FeoC protein protects the FeoB transporter from FtsH-mediated proteolysis. Our present study provides a singular example of bacteria that can control expression of iron uptake systems posttranslationally by employing a small iron transporter-binding protein.  相似文献   

17.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron and must obtain this element in the human host as well as in its varied environmental niches. It has multiple systems for iron acquisition, including the TonB-dependent transport of heme, the endogenous siderophore vibriobactin and several siderophores that are produced by other microorganisms. There is also a Feo system for the transport of ferrous iron and an ABC transporter, Fbp, which transports ferric iron. There appears to be at least one additional high affinity iron transport system that has not yet been identified. In iron replete conditions, iron acquisition genes are repressed by Fur. Fur also represses the synthesis of a small, regulatory RNA, RyhB, which negatively regulates genes for iron-containing proteins involved in the tricarboxylic acid cycle and respiration as well as genes for motility and chemotaxis. The redundancy in iron transport systems has made it more difficult to determine the role of individual systems in vivo and in vitro, but it may reflect the overall importance of iron in the growth and survival of V. cholerae.  相似文献   

18.
Vibrio cholerae has multiple iron acquisition systems, including TonB-dependent transport of heme and of the catechol siderophore vibriobactin. Strains defective in both of these systems grow well in laboratory media and in the infant mouse intestine, indicating the presence of additional iron acquisition systems. Previously uncharacterized potential iron transport systems, including a homologue of the ferrous transporter Feo and a periplasmic binding protein-dependent ATP binding cassette (ABC) transport system, termed Fbp, were identified in the V. cholerae genome sequence. Clones encoding either the Feo or the Fbp system exhibited characteristics of iron transporters: both repressed the expression of lacZ cloned under the control of a Fur-regulated promoter in Escherichia coli and also conferred growth on a Shigella flexneri mutant that has a severe defect in iron transport. Two other ABC transporters were also evaluated but were negative by these assays. Transport of radioactive iron by the Feo system into the S. flexneri iron transport mutant was stimulated by the reducing agent ascorbate, consistent with Feo functioning as a ferrous transporter. Conversely, ascorbate inhibited transport by the Fbp system, suggesting that it transports ferric iron. The growth of V. cholerae strains carrying mutations in one or more of the potential iron transport genes indicated that both Feo and Fbp contribute to iron acquisition. However, a mutant defective in the vibriobactin, Fbp, and Feo systems was not attenuated in a suckling mouse model, suggesting that at least one other iron transport system can be used in vivo.  相似文献   

19.
Ferrous iron (Fe2+) transport is an essential process that supports the growth, intracellular survival, and virulence of several drug-resistant pathogens, and the ferrous iron transport (Feo) system is the most important and widespread protein complex that mediates Fe2+ transport in these organisms. The Feo system canonically comprises three proteins (FeoA/B/C). FeoA and FeoC are both small, accessory proteins localized to the cytoplasm, and their roles in the Fe2+ transport process have been of great debate. FeoB is the only wholly-conserved component of the Feo system and serves as the inner membrane-embedded Fe2+ transporter with a soluble G-protein-like N-terminal domain. In vivo studies have underscored the importance of Feo during infection, emphasizing the need to better understand Feo-mediated Fe2+ uptake, although a paucity of research exists on intact FeoB. To surmount this problem, we designed an overproduction and purification system that can be applied generally to a suite of intact FeoBs from several organisms. Importantly, we noted that FeoB is extremely sensitive to excess salt while in the membrane of a recombinant host, and we designed a workflow to circumvent this issue. We also demonstrated effective protein extraction from the lipid bilayer through small-scale solubilization studies. We then applied this approach to the large-scale purifications of Escherichia coli and Pseudomonas aeruginosa FeoBs to high purity and homogeneity. Lastly, we show that our protocol can be generally applied to various FeoB proteins. Thus, this workflow allows for isolation of suitable quantities of FeoB for future biochemical and biophysical characterization.  相似文献   

20.
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron‐restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore‐dependent growth at pH 7.6, but had a neglible effect on FtrABCD system‐dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore‐dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron‐restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号