首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex.  相似文献   

2.
Major histocompatibility complex (MHC) class I molecules are ligands for T-cell receptors of CD8+ T cells and inhibitory receptors of natural killer cells. Assembly of the heavy chain, light chain, and peptide components of MHC class I molecules occurs in the endoplasmic reticulum (ER). Specific assembly factors and generic ER chaperones, collectively called the MHC class I peptide loading complex (PLC), are required for MHC class I assembly. Calreticulin has an important role within the PLC and induces MHC class I cell surface expression, but the interactions and mechanisms involved are incompletely understood. We show that interactions with the thiol oxidoreductase ERp57 and substrate glycans are important for the recruitment of calreticulin into the PLC and for its functional activities in MHC class I assembly. The glycan and ERp57 binding sites of calreticulin contribute directly or indirectly to complexes between calreticulin and the MHC class I assembly factor tapasin and are important for maintaining steady-state levels of both tapasin and MHC class I heavy chains. A number of destabilizing conditions and mutations induce generic polypeptide binding sites on calreticulin and contribute to calreticulin-mediated suppression of misfolded protein aggregation in vitro. We show that generic polypeptide binding sites per se are insufficient for stable recruitment of calreticulin to PLC substrates in cells. However, such binding sites could contribute to substrate stabilization in a step that follows the glycan and ERp57-dependent recruitment of calreticulin to the PLC.  相似文献   

3.
Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.  相似文献   

4.
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.  相似文献   

5.
The assembly of newly synthesized MHC class I molecules within the endoplasmic reticulum and their association with the transporter associated with antigen processing (TAP) is a process involving the chaperones calnexin and calreticulin. Using peptide mapping by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify a new component, we now introduce a third molecular chaperone, the thiol-dependent reductase ER-60 (ERp57/GRP58/ERp61/HIP-70/Q2), into this process. ER-60 is found in MHC class I heavy chain complexes with calnexin that are generated early during the MHC class I assembly pathway. The thiol reductase activity of ER-60 raises the possibility that ER-60 is involved in the disulfide bond formation within heavy chains. In addition, ER-60 is part of the late assembly complexes consisting of MHC class I, tapasin, TAP, calreticulin and calnexin. In a beta2-microglobulin (beta2m)-negative mouse cell line, S3, ER-60-calnexin-heavy chain complexes are shown to bind to TAP, suggesting that beta2m is not required for the association of MHC class I heavy chains with TAP.  相似文献   

6.
The endoplasmic reticulum (ER)-resident proteins TAP, tapasin and ERp57 are the core components of the major histocompatibility complex (MHC) class I peptide-loading complex and play an important role in peptide loading by MHC class I-beta(2)microglobulin dimers. ERp57 and tapasin form a stable disulfide-linked heterodimer within the peptide-loading complex. We demonstrate that ERp57-deficient loading complexes, obtained by expression in a tapasin-negative cell line of a tapasin mutant (C95A) that is not able to form a disulfide bond with ERp57, are prone to aggregation. We studied the assembly, stability and aggregation of the core loading complex using cell lines stably expressing fluorescently tagged tapasin (wild type or C95A mutant) and TAP1. Part of the loading complexes containing the tagged C95A tapasin and TAP1 were sequestered in the ER, without change of their ER transmembrane topology, and were surrounded by a mesh of filaments at the cytosolic side, resulting in formation of protein aggregates with characteristic morphology. Protein aggregates were associated with changes in ER protein turnover but did not affect the cell viability and did not induce the unfolded protein response. Fluorescence resonance energy transfer analysis of the aggregate-free ER fraction revealed that lack of ERp57 did not affect the stoichiometry or stability of tapasin-TAP1 interactions in the assembled 'soluble' core loading complexes. We conclude that the presence of ERp57 is important for the stability of core loading complexes, and that in its absence, the core loading complexes may form stable aggregates within the ER.  相似文献   

7.
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.  相似文献   

8.
We have established a semipermeabilized cell system that reproduces the folding and assembly of a major histocompatibility complex (MHC) class I complex as it would occur in the intact cell. The translation of the MHC class I heavy chain (HLA-B27) in this system was synchronized allowing the folding and assembly of polypeptide chains synthesized within a short time frame to be analyzed. This has enabled us to dissect the time course of interaction of both disulfide and nondisulfide-bonded heavy chain with various molecular chaperones during its assembly in a functionally intact endoplasmic reticulum. The results demonstrate that unassembled, nondisulfide-bonded forms of heavy chain interact initially with calnexin. A later and more prolonged interaction of calreticulin, specifically with assembled, disulfide-bonded heavy chain, highlights distinct differences in the roles of these two proteins in the assembly of MHC class I molecules. We also demonstrate that the thiol-dependent reductase ERp57 initially interacts with nondisulfide-bonded heavy chain, but this rapidly becomes disulfide-bonded and indicates that heavy chain folding occurs during its interaction with ERp57. In addition, we also confirm a direct interaction between MHC class I heavy chain and tapasin, emphasizing the role that this protein plays in the later stages of MHC class I assembly.  相似文献   

9.
MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.  相似文献   

10.
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.  相似文献   

11.
We previously showed that the major histocompatibility complex (MHC) class I chaperone tapasin can be detected as a mixed disulfide with the thiol-oxidoreductase ERp57. Here we show that tapasin is a unique and preferred substrate, a substantial majority of which is disulfide-linked to ERp57 within the cell. Tapasin upregulation by interferon-gamma induces sequestration of the vast majority of ERp57 into the MHC class I peptide-loading complex. The rate of tapasin-ERp57 conjugate formation is unaffected by the absence of beta2-microglubulin (beta2m), and is independent of calnexin or calreticulin interactions with monoglucosylated N-linked glycans. The heterodimer forms spontaneously in vitro upon mixing recombinant ERp57 and tapasin. Noncovalent interactions between the native proteins inhibit the reductase activity of the thioredoxin CXXC motif within the N-terminal a domain of ERp57 to maintain its interaction with tapasin. Disruption of these interactions by denaturation allows reduction to proceed. Thus, tapasin association specifically inhibits the escape pathway required for disulfide-bond isomerization within conventional protein substrates, suggesting a specific structural role for ERp57 within the MHC class I peptide-loading complex.  相似文献   

12.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8 T cells. The peptides are generated in the cytosol, then translocated across the membrane of the endoplasmic reticulum by the transporter associated with antigen processing (TAP). TAP is a trimeric complex consisting of TAP1, TAP2, and tapasin (TAP-A) as indicated for human cells by reciprocal coprecipitation with anti-TAP1/2 and anti-tapasin antibodies, respectively. TAP1 and TAP2 are required for the peptide transport. Tapasin is involved in the association of class I with TAP and in the assembly of class I with peptide. The mechanisms of tapasin function are still unknown. Moreover, there has been no evidence for a murine tapasin analogue, which has led to the suggestion that murine MHC class I binds directly to TAP1/2. In this study, we have cloned the mouse analogue of tapasin. The predicted amino acid sequence showed 78% identity to human tapasin with identical consensus sequences of signal peptide, N-linked glycosylation site, transmembrane domain and double lysine motif. However, there was less homology (47%) found at the predicted cytosolic domain, and in addition, mouse tapasin is 14 amino acids longer than the human analogue at the C terminus. This part of the molecule may determine the species specificity for interaction with MHC class I or TAP1/2. Like human tapasin, mouse tapasin binds both to TAP1/2 and MHC class I. In TAP2-mutated RMA-S cells, both TAP1 and MHC class I were coprecipitated by anti-tapasin antiserum indicative of association of tapasin with TAP1 but not TAP2. With crosslinker-modified peptides and purified microsomes, anti-tapasin coprecipitated both peptide-bound MHC class I and TAP1/2. In contrast, anti-calreticulin only coprecipitated peptide-free MHC class I molecules. This difference in association with peptide-loaded class I suggests that tapasin functions later than calreticulin during MHC class I assembly, and controls peptide loading onto MHC class I molecules in the endoplasmic reticulum.  相似文献   

13.
Before peptide binding in the endoplasmic reticulum, the class I heavy (H) chain-beta(2)-microglobulin complexes are detected in association with TAP and two chaperones, TPN and CRT. Recent studies have shown that the thiol-dependent reductase, ERp57, is also present in this peptide-loading complex. However, it remains controversial whether the association of ERp57 with MHC class I molecules precedes their combined association with the peptide-loading complex or whether ERp57 only associates with class I molecules in the presence of TPN. Resolution of this controversy could help determine the role of ERp57 in class I folding and/or assembly. To define the mouse class I H chain structures involved in interaction with ERp57, we tested chaperone association of L(d) mutations at residues 134 and 227/229 (previously implicated in TAP association), residues 86/88 (which ablate an N-linked glycan), and residue 101 (which disrupts a disulfide bond). The association of ERp57 with each of these mutant H chains showed a complete concordance with CRT, TAP, and TPN but not with calnexin. Furthermore, ERp57 failed to associate with H chain in TPN-deficient.220 cells. These combined data demonstrate that, during the assembly of the peptide-loading complex, the association of ERp57 with mouse class I is TPN dependent and parallels that of CRT and not calnexin.  相似文献   

14.
COS7 (African Green Monkey kidney) cells stably transfected with the mouse MHC class I allele H-2K(b) were mutagenized, selected for low surface expression of endogenous MHC class I products, and subcloned. A mutant cell line, 4S8.12, expressing very low surface MHC class I (approximately 5% of parental levels) was identified. This cell line synthesized normal levels of the MHC class I H chain and beta(2)-microglobulin, as well as normal levels of TAP, tapasin, GRP78, calnexin, calreticulin, ERp57, and protein disulfide isomerase. Full-length OVA was processed to generate presented H-2K(b)-SIINFEKL complexes with equal efficiency in wild-type and mutant cells, demonstrating that proteasomes, as well as TAP and tapasin, functioned normally. Therefore, all the known components of the MHC class I Ag presentation pathway were intact. Nevertheless, primate (human and monkey) MHC class I H chain and beta(2)-microglobulin failed to associate to form the normal peptide-receptive complex. In contrast, mouse H chains associated with beta(2)-microglobulin normally and bound peptide at least as well as in wild-type cells. The 4S8.12 cells provide strong genetic evidence for a novel component in the MHC class I pathway. This as-yet unidentified gene is important in early assembly of primate, but not mouse, MHC class I complexes.  相似文献   

15.
The ER protein tapasin (Tpn) forms a bridge between MHC class I H chain (HC)/beta(2)-microglobulin and the TAP peptide transporter. The function of this TAP-associated complex was unclear because it was reported that soluble Tpn that has lost TAP interaction would be fully competent in terms of peptide loading and Ag presentation. We found, however, that only wild-type human Tpn (hTpn), but not three soluble hTpn variants, a transmembrane domain point mutant of hTpn (L410-->F), wild-type mouse Tpn, nor a mouse-human Tpn hybrid, fully up-regulated peptide-dependent Bw4 epitopes when expressed in Tpn-deficient.220.B*4402 cells. Consistent with suboptimal peptide loading, the t(1/2) of class I molecules was considerably reduced in the presence of soluble hTpn, hTpn-L410F, and murine Tpn. Furthermore, eluted peptide spectra and the class I-mediated inhibition of NK clones showed distinct differences to the hTpn transfectant. Only wild-type hTpn efficiently recruited HC and calreticulin (Crt) into complexes with TAP and endoplasmic reticulum p57 (ERp57). The L410F mutant was defective in TAP association, but bound to class I molecules, Crt, and ERp57. Mouse Tpn associated with human TAP and ERp57 on the one hand, and with HC and Crt on the other, but failed to recruit normal amounts of HLA class I molecules into the TAP complex. We conclude that the loading with peptides conferring high stability requires the Tpn-mediated introduction of HC into the TAP complex, whereas the mere interaction with Tpn is not sufficient.  相似文献   

16.
Tapasin organizes the peptide-loading complex (PLC) by recruiting peptide-receptive MHC class I (MHC-I) and accessory chaperones to the N-terminal regions of the TAP subunits TAP1 and TAP2. Despite numerous studies have shown that the formation of the PLC is essential to facilitate proper MHC-I loading, the molecular architecture of this complex is still highly controversial. We studied the stoichiometry of the PLC by blue native-PAGE in combination with Ab-shift assays and found that TAP/tapasin complexes exist at steady state as a mixture of two distinct oligomers of 350 and 450 kDa. Only the higher m.w. complex contains MHC-I and disulfide-linked tapasin/ER60 conjugates. Moreover, we show for the first time to our knowledge that the fully assembled PLC comprises two tapasin, two ER60, but only one complex of MHC-I and calreticulin. Based hereon we postulate that the TAP subunits alternate in the recruitment and loading of a single MHC-I.  相似文献   

17.
Major histocompatibility complex (MHC) class I molecules load peptides in the endoplasmic reticulum in a process during which the peptide cargo is normally optimized in favor of stable MHC-peptide interactions. A dynamic multimolecular assembly termed the peptide-loading complex (PLC) participates in this process and is composed of MHC class I molecules, calreticulin, ERp57, and tapasin bound to the transporter associated with antigen processing (TAP) peptide transporter. We have exploited the observation that the rat MHC class I allele RT1-Aa, when expressed in the rat C58 thymoma cell line, effectively competes and prevents the endogenous RT1-Au molecule from associating with TAP. However, stable RT1-Au molecules are assembled efficiently in competition with RT1-Aa, demonstrating that cargo optimization can occur in the absence of TAP association. Defined mutants of RT1-Aa, which do not allow formation of the PLC, fail to become thermostable in C58 cells. Wild-type RT1-Aa, which does allow PLC formation, also fails to become thermostable in this cell line, which carries the rat TAPB transporter that supplies peptides incompatible for RT1-Aa binding. Full optimization of RT1-Aa requires the presence of the TAP2A allele, which is capable of supplying suitable peptides. Thus, formation of the PLC alone is not sufficient for optimization of the MHC class I peptide cargo.  相似文献   

18.
The endoplasmic reticulum-located multimolecular peptide-loading complex functions to load optimal peptides onto major histocompatibility complex (MHC) class I molecules for presentation to CD8(+) T lymphocytes. Two oxidoreductases, ERp57 and protein-disulfide isomerase, are known to be components of the peptide-loading complex. Within the peptide-loading complex ERp57 is normally found disulfide-linked to tapasin, through one of its two thioredoxin-like redox motifs. We describe here a novel trimeric complex that disulfide links together MHC class I heavy chain, ERp57 and tapasin, and that is found in association with the transporter associated with antigen processing peptide transporter. The trimeric complex normally represents a small subset of the total ERp57-tapasin pool but can be significantly increased by altering intracellular oxidizing conditions. Direct mutation of a conserved structural cysteine residue implicates an interaction between ERp57 and the MHC class I peptide-binding groove. Taken together, our studies demonstrate for the first time that ERp57 directly interacts with MHC class I molecules within the peptide-loading complex and suggest that ERp57 and protein-disulfide isomerase act in concert to regulate the redox status of MHC class I during antigen presentation.  相似文献   

19.
Several endoplasmic reticulum proteins, including tapasin, play an important role in major histocompatibility complex (MHC) class I assembly. In this study, we assessed the influence of the tapasin cytoplasmic tail on three mouse MHC class I allotypes (H2-Kb, -Kd, and -Ld) and demonstrated that the expression of truncated mouse tapasin in mouse cells resulted in very low Kb, Kd, and Ld surface expression. The surface expression of Kd also could not be rescued by human soluble tapasin, suggesting that the surface expression phenotype of the mouse MHC class I molecules in the presence of soluble tapasin was not due to mouse/human differences in tapasin. Notably, soluble mouse tapasin was able to partially rescue HLA-B8 surface expression on human 721.220 cells. Thus, the cytoplasmic tail of tapasin (either mouse or human) has a stronger impact on the surface expression of murine MHC class I molecules on mouse cells than on the expression of HLA-B8 on human cells. A K408W mutation in the mouse tapasin transmembrane/cytoplasmic domain disrupted Kd folding and release from tapasin, but not interaction with transporter associated with antigen processing (TAP), indicating that the mechanism whereby the tapasin transmembrane/cytoplasmic domain facilitates MHC class I assembly is not limited to TAP stabilization. Our findings indicate that the C terminus of mouse tapasin plays a vital role in enabling murine MHC class I molecules to be expressed at the surface of mouse cells.  相似文献   

20.
ERp57 is a member of the protein disulfide isomerase (PDI) family that is located in the endoplasmic reticulum (ER) and characterized by its specificity for glycoproteins. Substrate selection by ERp57 is dependent upon its formation of discrete complexes with two ER resident lectins, soluble calreticulin and membrane-bound calnexin. It is these two lectins that directly associate with glycoproteins bearing correctly trimmed oligosaccharide side chains. Thus, ERp57 is presented with a preselected set of substrates upon which it can act, and the specific binding of calreticulin and calnexin to ERp57 is pivotal to the functions of the resulting complexes. To gain further insights into the formation of these ERp57-ER lectin complexes, we have investigated the regions of ERp57 that are specifically required for its binding to calreticulin. Using a quantitative pull-down assay to investigate the binding of ERp57/PDI chimeras to calreticulin, we define the b and b' domains of ERp57 as the minimal elements that are sufficient for complex formation. This analysis further identifies a novel role for the distinctive C-terminal extension of ERp57 in reconstituting complex formation to wild type levels. Using our understanding of substrate binding to the b' domain of PDI as a paradigm, we show that alterations to specific residues in the b' domain of ERp57 dramatically reduce or completely abolish its binding to calreticulin. On the basis of these data, we propose a model where the region of ERp57 equivalent to the primary substrate binding site of archetypal PDI is occupied by calreticulin and suggest that the ER lectins act as adaptor molecules that define the substrate specificity of ERp57.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号