首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We previously showed that the major histocompatibility complex (MHC) class I chaperone tapasin can be detected as a mixed disulfide with the thiol-oxidoreductase ERp57. Here we show that tapasin is a unique and preferred substrate, a substantial majority of which is disulfide-linked to ERp57 within the cell. Tapasin upregulation by interferon-gamma induces sequestration of the vast majority of ERp57 into the MHC class I peptide-loading complex. The rate of tapasin-ERp57 conjugate formation is unaffected by the absence of beta2-microglubulin (beta2m), and is independent of calnexin or calreticulin interactions with monoglucosylated N-linked glycans. The heterodimer forms spontaneously in vitro upon mixing recombinant ERp57 and tapasin. Noncovalent interactions between the native proteins inhibit the reductase activity of the thioredoxin CXXC motif within the N-terminal a domain of ERp57 to maintain its interaction with tapasin. Disruption of these interactions by denaturation allows reduction to proceed. Thus, tapasin association specifically inhibits the escape pathway required for disulfide-bond isomerization within conventional protein substrates, suggesting a specific structural role for ERp57 within the MHC class I peptide-loading complex.  相似文献   

2.
For their efficient assembly in the endoplasmic reticulum (ER), major histocompatibility complex (MHC) class I molecules require the specific assembly factors transporter associated with antigen processing (TAP) and tapasin, as well as generic ER folding factors, including the oxidoreductases ERp57 and protein disulfide isomerase (PDI), and the chaperone calreticulin. TAP transports peptides from the cytosol into the ER. Tapasin promotes the assembly of MHC class I molecules with peptides. The formation of disulfide‐linked conjugates of tapasin with ERp57 is suggested to be crucial for tapasin function. Important functional roles are also suggested for the tapasin transmembrane and cytoplasmic domains, sites of tapasin interaction with TAP. We show that interactions of tapasin with both TAP and ERp57 are correlated with strong MHC class I recruitment and assembly enhancement. The presence of the transmembrane/cytosolic regions of tapasin is critical for efficient tapasin–MHC class I binding in interferon‐γ‐treated cells, and contributes to an ERp57‐independent mode of MHC class I assembly enhancement. A second ERp57‐dependent mode of tapasin function correlates with enhanced MHC class I binding to tapasin and calreticulin. We also show that PDI binds to TAP in a tapasin‐independent manner, but forms disulfide‐linked conjugates with soluble tapasin. Thus, full‐length tapasin is important for enhancing recruitment of MHC class I molecules and increasing specificity of tapasin–ERp57 conjugation. Furthermore, tapasin or the TAP/tapasin complex has an intrinsic ability to recruit MHC class I molecules and promote assembly, but also uses generic folding factors to enhance MHC class I recruitment and assembly.  相似文献   

3.
The endoplasmic reticulum-located multimolecular peptide-loading complex functions to load optimal peptides onto major histocompatibility complex (MHC) class I molecules for presentation to CD8(+) T lymphocytes. Two oxidoreductases, ERp57 and protein-disulfide isomerase, are known to be components of the peptide-loading complex. Within the peptide-loading complex ERp57 is normally found disulfide-linked to tapasin, through one of its two thioredoxin-like redox motifs. We describe here a novel trimeric complex that disulfide links together MHC class I heavy chain, ERp57 and tapasin, and that is found in association with the transporter associated with antigen processing peptide transporter. The trimeric complex normally represents a small subset of the total ERp57-tapasin pool but can be significantly increased by altering intracellular oxidizing conditions. Direct mutation of a conserved structural cysteine residue implicates an interaction between ERp57 and the MHC class I peptide-binding groove. Taken together, our studies demonstrate for the first time that ERp57 directly interacts with MHC class I molecules within the peptide-loading complex and suggest that ERp57 and protein-disulfide isomerase act in concert to regulate the redox status of MHC class I during antigen presentation.  相似文献   

4.
The assembly and peptide loading of major histocompatibility complex Class I molecules within the endoplasmic reticulum are essential for antigen presentation at the cell surface and are facilitated by the peptide-loading complex. The formation of a mixed disulfide between the heavy chain of Class I and components of the loading complex (ERp57, protein disulfide isomerase, and tapasin) suggests that these molecules are involved in the redox regulation of components during assembly and peptide loading. We demonstrate here that a disulfide formed between heavy chain and tapasin can occur between cysteine residues located in the cytosolic regions of these proteins following translation of heavy chain in an in vitro translation system. The formation of this disulfide occurs after assembly into the loading complex and is coincident with the stabilization of the alpha2 disulfide bond within the peptide binding grove. A ternary complex between heavy chain, ERp57, and tapasin was observed and shown to be stabilized by a disulfide between both tapasinheavy chain and tapasin-ERp57. No disulfides were observed between ERp57 and heavy chain within the loading complex. The results provide a detailed evaluation of the various transient disulfides formed within the peptide-loading complex during biosynthesis. In addition, the absence of the disulfide between tapasin and heavy chain in TAP-deficient cells indicates that a change in the spatial organization of tapasin and heavy chain occurs following assembly into the loading complex.  相似文献   

5.
Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.  相似文献   

6.
The endoplasmic reticulum (ER)-resident proteins TAP, tapasin and ERp57 are the core components of the major histocompatibility complex (MHC) class I peptide-loading complex and play an important role in peptide loading by MHC class I-beta(2)microglobulin dimers. ERp57 and tapasin form a stable disulfide-linked heterodimer within the peptide-loading complex. We demonstrate that ERp57-deficient loading complexes, obtained by expression in a tapasin-negative cell line of a tapasin mutant (C95A) that is not able to form a disulfide bond with ERp57, are prone to aggregation. We studied the assembly, stability and aggregation of the core loading complex using cell lines stably expressing fluorescently tagged tapasin (wild type or C95A mutant) and TAP1. Part of the loading complexes containing the tagged C95A tapasin and TAP1 were sequestered in the ER, without change of their ER transmembrane topology, and were surrounded by a mesh of filaments at the cytosolic side, resulting in formation of protein aggregates with characteristic morphology. Protein aggregates were associated with changes in ER protein turnover but did not affect the cell viability and did not induce the unfolded protein response. Fluorescence resonance energy transfer analysis of the aggregate-free ER fraction revealed that lack of ERp57 did not affect the stoichiometry or stability of tapasin-TAP1 interactions in the assembled 'soluble' core loading complexes. We conclude that the presence of ERp57 is important for the stability of core loading complexes, and that in its absence, the core loading complexes may form stable aggregates within the ER.  相似文献   

7.
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.  相似文献   

8.
The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.  相似文献   

9.
MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.  相似文献   

10.
Major histocompatibility complex (MHC) class I molecules are ligands for T-cell receptors of CD8+ T cells and inhibitory receptors of natural killer cells. Assembly of the heavy chain, light chain, and peptide components of MHC class I molecules occurs in the endoplasmic reticulum (ER). Specific assembly factors and generic ER chaperones, collectively called the MHC class I peptide loading complex (PLC), are required for MHC class I assembly. Calreticulin has an important role within the PLC and induces MHC class I cell surface expression, but the interactions and mechanisms involved are incompletely understood. We show that interactions with the thiol oxidoreductase ERp57 and substrate glycans are important for the recruitment of calreticulin into the PLC and for its functional activities in MHC class I assembly. The glycan and ERp57 binding sites of calreticulin contribute directly or indirectly to complexes between calreticulin and the MHC class I assembly factor tapasin and are important for maintaining steady-state levels of both tapasin and MHC class I heavy chains. A number of destabilizing conditions and mutations induce generic polypeptide binding sites on calreticulin and contribute to calreticulin-mediated suppression of misfolded protein aggregation in vitro. We show that generic polypeptide binding sites per se are insufficient for stable recruitment of calreticulin to PLC substrates in cells. However, such binding sites could contribute to substrate stabilization in a step that follows the glycan and ERp57-dependent recruitment of calreticulin to the PLC.  相似文献   

11.
Before peptide binding in the endoplasmic reticulum, the class I heavy (H) chain-beta(2)-microglobulin complexes are detected in association with TAP and two chaperones, TPN and CRT. Recent studies have shown that the thiol-dependent reductase, ERp57, is also present in this peptide-loading complex. However, it remains controversial whether the association of ERp57 with MHC class I molecules precedes their combined association with the peptide-loading complex or whether ERp57 only associates with class I molecules in the presence of TPN. Resolution of this controversy could help determine the role of ERp57 in class I folding and/or assembly. To define the mouse class I H chain structures involved in interaction with ERp57, we tested chaperone association of L(d) mutations at residues 134 and 227/229 (previously implicated in TAP association), residues 86/88 (which ablate an N-linked glycan), and residue 101 (which disrupts a disulfide bond). The association of ERp57 with each of these mutant H chains showed a complete concordance with CRT, TAP, and TPN but not with calnexin. Furthermore, ERp57 failed to associate with H chain in TPN-deficient.220 cells. These combined data demonstrate that, during the assembly of the peptide-loading complex, the association of ERp57 with mouse class I is TPN dependent and parallels that of CRT and not calnexin.  相似文献   

12.
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.  相似文献   

13.
Major histocompatibility complex (MHC) class I molecules load peptides in the endoplasmic reticulum in a process during which the peptide cargo is normally optimized in favor of stable MHC-peptide interactions. A dynamic multimolecular assembly termed the peptide-loading complex (PLC) participates in this process and is composed of MHC class I molecules, calreticulin, ERp57, and tapasin bound to the transporter associated with antigen processing (TAP) peptide transporter. We have exploited the observation that the rat MHC class I allele RT1-Aa, when expressed in the rat C58 thymoma cell line, effectively competes and prevents the endogenous RT1-Au molecule from associating with TAP. However, stable RT1-Au molecules are assembled efficiently in competition with RT1-Aa, demonstrating that cargo optimization can occur in the absence of TAP association. Defined mutants of RT1-Aa, which do not allow formation of the PLC, fail to become thermostable in C58 cells. Wild-type RT1-Aa, which does allow PLC formation, also fails to become thermostable in this cell line, which carries the rat TAPB transporter that supplies peptides incompatible for RT1-Aa binding. Full optimization of RT1-Aa requires the presence of the TAP2A allele, which is capable of supplying suitable peptides. Thus, formation of the PLC alone is not sufficient for optimization of the MHC class I peptide cargo.  相似文献   

14.
MHC class I molecules assemble with peptides in the endoplasmic reticulum (ER). To ensure that only peptide-loaded MHC molecules leave the ER, empty molecules are retained by ER-resident chaperones, most notably the MHC-specific tapasin. ER exit of class I MHC is also controlled by viruses, but for the opposite purpose of preventing peptide presentation to T cells. Interestingly, some viral proteins are able to retain MHC class I molecules in the ER despite being transported. By contrast, other viral proteins exit the ER only upon binding to class I MHC, thereby rerouting newly synthesized class I molecules to intracellular sites of proteolysis. Thus, immune escape can be achieved by reversing, inhibiting or redirecting the chaperone-assisted MHC class I folding, assembly and intracellular transport.  相似文献   

15.
In this study, we examine the role of the putative cargo receptor B cell-associated protein (Bap)29/31 in the export of MHC class I molecules out of the endoplasmic reticulum (ER). We show that Bap31 binds to two allotypes of mouse class I molecules, with the interaction initiated at the time of H chain association with beta(2)-microglobulin and maintained until the class I molecule has left the ER. We also show that Bap31 is part of the peptide-loading complex, although is not required for its formation. Bap31 binds not only to class I molecules, but can bind to tapasin in the absence of class I. Consistent with an important role in recruiting class I molecules to transport vesicles, we show that in the absence of Bap29/31, there is a loss of class I colocalization with mSec31 (p137), a component of mammalian coat protein complex II coats. This observation is also associated with a delay in class I traffic from ER to Golgi. Our results are consistent with the view that class I molecules are largely recruited to ER exit sites by Bap29/31, and that Bap29/31 is a cargo receptor for MHC class I molecules.  相似文献   

16.
The ER protein tapasin (Tpn) forms a bridge between MHC class I H chain (HC)/beta(2)-microglobulin and the TAP peptide transporter. The function of this TAP-associated complex was unclear because it was reported that soluble Tpn that has lost TAP interaction would be fully competent in terms of peptide loading and Ag presentation. We found, however, that only wild-type human Tpn (hTpn), but not three soluble hTpn variants, a transmembrane domain point mutant of hTpn (L410-->F), wild-type mouse Tpn, nor a mouse-human Tpn hybrid, fully up-regulated peptide-dependent Bw4 epitopes when expressed in Tpn-deficient.220.B*4402 cells. Consistent with suboptimal peptide loading, the t(1/2) of class I molecules was considerably reduced in the presence of soluble hTpn, hTpn-L410F, and murine Tpn. Furthermore, eluted peptide spectra and the class I-mediated inhibition of NK clones showed distinct differences to the hTpn transfectant. Only wild-type hTpn efficiently recruited HC and calreticulin (Crt) into complexes with TAP and endoplasmic reticulum p57 (ERp57). The L410F mutant was defective in TAP association, but bound to class I molecules, Crt, and ERp57. Mouse Tpn associated with human TAP and ERp57 on the one hand, and with HC and Crt on the other, but failed to recruit normal amounts of HLA class I molecules into the TAP complex. We conclude that the loading with peptides conferring high stability requires the Tpn-mediated introduction of HC into the TAP complex, whereas the mere interaction with Tpn is not sufficient.  相似文献   

17.
The adaptive immune system plays an essential role in protecting vertebrates against a broad range of pathogens and cancer. The MHC class I-dependent pathway of antigen presentation represents a sophisticated cellular machinery to recognize and eliminate infected or malignantly transformed cells, taking advantage of the proteasomal turnover of the cell's proteome. TAP (transporter associated with antigen processing) 1/2 (ABCB2/3, where ABC is ATP-binding cassette) is the principal component in the recognition, translocation, chaperoning, editing and final loading of antigenic peptides on to MHC I complexes in the ER (endoplasmic reticulum) lumen. These different tasks are co-ordinated within a dynamic macromolecular peptide-loading complex consisting of TAP1/2 and various auxiliary factors, such as the adapter protein tapasin, the oxidoreductase ERp57, the lectin chaperone calreticulin, and the final peptide acceptor the MHC I heavy chain associated with β2-microglobulin. In this chapter, we summarize the structural organization and molecular mechanism of the antigen-translocation machinery as well as various modes of regulation by viral factors and in genetic diseases and tumour development.  相似文献   

18.
The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation.  相似文献   

19.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

20.
ERp57 is a thiol oxidoreductase of the endoplasmic reticulum that appears to be recruited to substrates indirectly through its association with the molecular chaperones calnexin and calreticulin. However, its functions in living cells have been difficult to demonstrate. During the biogenesis of class I histocompatibility molecules, ERp57 has been detected in association with free class I heavy chains and, at a later stage, with a large complex termed the peptide loading complex. This implicates ERp57 in heavy chain disulfide formation, isomerization, or reduction as well as in the loading of peptides onto class I molecules. In this study, we show that ERp57 does indeed participate in oxidative folding of the heavy chain. Depletion of ERp57 by RNA interference delayed heavy chain disulfide bond formation, slowed folding of the heavy chain alpha(3) domain, and caused slight delays in the transport of class I molecules from the endoplasmic reticulum to the Golgi apparatus. In contrast, heavy chain-beta(2)-microglobulin association kinetics were normal, suggesting that the interaction between heavy chain and beta(2) -microglobulin does not depend on an oxidized alpha(3) domain. Likewise, the peptide loading complex assembled properly, and peptide loading appeared normal upon depletion of ERp57. These studies demonstrate that ERp57 is involved in disulfide formation in vivo but do not support a role for ERp57 in peptide loading of class I molecules. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no detectable effect on class I biogenesis, consistent with a specialized role for ERp57 in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号