首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
核衣壳(nucleocapsid,N)蛋白有稳定病毒基因组、调控病毒复制及细胞状态的特殊作用。鼠肝炎病毒(murine hepatitis virus,MHV)为乙型冠状病毒属的原型病毒,是研究冠状病毒N蛋白功能的经典模型。本研究用去污剂处理鼠冠状病毒粒子暴露N蛋白,另用原核表达纯化的重组N蛋白分别免疫小鼠,制备多克隆及单克隆抗体。酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)和蛋白免疫印迹分析结果显示两类抗体均具有高灵敏度和特异度,与甲型冠状病毒猪传染性胃肠炎病毒(porcine transmissible gastroenteritis virus,TGEV)的N蛋白无交叉反应。原核表达缺失突变的N蛋白分析结果显示,多克隆抗体与单克隆抗体2E6识别的鼠冠状病毒N蛋白抗原决定簇完全一致,位于N端结构域(N-terminal domain,NTD)C端与SR之间的58个氨基酸残基内。此外,基于单克隆抗体2E6的ELISA及免疫荧光法能检测到感染细胞中和培养上清液中的N蛋白组分,且其含量与病毒复制的滴度一致。这些结果表明,鼠冠状病毒复制过程中粒子与细胞中的N蛋白可能维持相似的结构,使NTD与SR之间的部分氨基酸残基一直暴露在表面,从而形成了优势抗原决定簇。  相似文献   

2.
树突细胞特异性细胞间黏附分子-3结合非整合素分子(dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin,DC-SIGN)和肝/淋巴结特异性细胞间黏附分子-3结合非整合素分子(liver/lymph node-specific intercellular adhesion molecules-3-grabbing non-integrin,L-SIGN)是钙离子依赖的C型凝集素受体,通过识别病毒粒子表面含甘露聚糖或果糖寡聚糖的分子介导病毒进入细胞,但其在调节病毒复制中的作用较少被关注。本研究通过建立稳定表达DC-SIGN和L-SIGN及其功能域嵌合体的细胞系,分析两者过表达对鼠冠状病毒复制的影响。结果显示,L-SIGN比DC-SIGN更能显著抑制病毒复制,这种差异与两者胞内区序列和基序组成不同有关;鼠冠状病毒感染导致细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)信号通路分子磷酸化下调,过表达DC-SIGN和L-SIGN可抑制这种下调趋势。在没有鼠癌胚抗原相关细胞黏附分子1(mouse carcinoembryonic antigen-related cell adhesion molecule 1,mCEACAM1)存在时,DC-SIGN不能介导病毒感染。这些结果提示,DC-SIGN通过与mCEACAM1a分子相互作用和调节细胞信号通路分子功能以调控鼠冠状病毒复制。  相似文献   

3.
非洲猪瘟(African swine fever, ASF)是由非洲猪瘟病毒(African swine fever virus, ASFV)感染引起家猪和野猪的一种高死亡率的传染性疾病。ASFV具有庞大的基因组,其中非结构蛋白pD1133L被预测为其编码的6个解旋酶之一。本实验室应用免疫沉淀-质谱联用(immunoprecipitation-mass spectrometry, IP-MASS)技术筛选与pD1133L互作的宿主细胞蛋白,发现细胞波形蛋白(vimentin, VIM)为pD1133L互作的宿主蛋白之一,但尚不清楚宿主蛋白VIM对ASFV复制的影响。【目的】探究ASFV与VIM的相互调控作用,揭示VIM促进ASFV复制的机制。【方法】通过免疫共沉淀(co-immunoprecipitation, Co-IP)试验验证pD1133L与VIM存在互作关系;外源过表达VIM蛋白以及设计并合成VIM的siRNA探究VIM对ASFV复制的影响;利用Western blotting以及荧光定量PCR (quantitative real-time PCR, qPCR)方法检测ASFV对VIM蛋白水平以及转录水平的影响;通过Western blotting、间接免疫荧光试验(immunofluorescence assay, IFA)探究巨噬细胞感染ASFV后VIM磷酸化水平变化以及亚细胞定位变化情况;CCK-8试剂盒检测VIM磷酸化抑制剂KN-93处理的最佳浓度,并利用Western blotting以及IFA检测KN-93对VIM磷酸化、亚细胞定位以及对ASFV复制影响。【结果】VIM过表达促进ASFV复制,敲低VIM的表达则抑制ASFV复制;ASFV感染抑制VIM蛋白水平以及转录水平表达,且呈时间依赖性;ASFV感染后VIM发生磷酸化修饰且发生亚细胞定位改变,从而促进ASFV复制。【结论】证实了ASFV与宿主蛋白VIM之间的相互调控作用;初步确定ASFV感染后VIM受到ASFV pD1133L调控,亚细胞定位发生重排向核周聚集从而促进ASFV复制的机制。  相似文献   

4.
磷酸化病毒蛋白的生物学功能及形成机制   总被引:1,自引:0,他引:1  
磷酸化是病毒蛋白常见的一种翻译后修饰,在调控病毒与宿主的代谢中起重要作用。生物体内的代谢活动与细胞内的信号转导密切相关,通过磷酸化和去磷酸化修饰可改变蛋白生物活性,从而调控胞内生物信号的传递。磷酸化修饰的病毒蛋白参与调控病毒复制、病毒增殖和病毒粒子装配等一系列病毒的代谢活动,同时也影响宿主细胞内的信号转导,抑制宿主基因组复制和表达。本文就病毒蛋白的磷酸化修饰位点、其生物学功能及磷酸化修饰的分子机制进行综述,为病毒感染性疾病的防控治疗及药物开发提供参考。  相似文献   

5.
SARS冠状病毒基因组编码2种病毒蛋白酶,即木瓜样蛋白酶(PLpro)和3C样蛋白酶(3CLpro).其中,PLpro蛋白酶结构与功能研究是近年来冠状病毒分子生物学研究的热点之一. PLpro蛋白酶参与SARS冠状病毒1a(1ab)复制酶多聚蛋白N端部分的切割加工,是SARS冠状病毒复制酶复合体(RC)形成的重要调节蛋白分子;最新研究表明,SARS冠状病毒PLpro蛋白酶是一种病毒编码的去泛素化酶(DUB),对细胞蛋白具有明显去泛素化作用;而且对泛素(Ub)和泛素样分子ISG15均具有活性. PLpro蛋白酶对宿主抗病毒天然免疫反应具有负调节作用,是SARS冠状病毒的一种重要干扰素拮抗分子.PLpro蛋白酶是一种多功能病毒蛋白酶.本文结合作者课题组研究工作,对SARS冠状病毒PLpro蛋白酶结构和功能研究最新进展进行综述.  相似文献   

6.
【目的】猪繁殖与呼吸综合征病毒(PRRSV)是一种危害全球养猪业的重要病原。SUMO(Small ubiquitin-like modifier)化修饰作为一种可逆的翻译后修饰在调节病毒复制方面发挥着重要功能。PIAS1(Protein inhibitor of activated STAT1)是SUMO E3连接酶PIAS家族的一员,可以促进靶蛋白的SUMO化修饰,进而影响靶蛋白的功能,参与基因转录调控过程。探究PIAS1与PRRSV N蛋白相互作用的机制及其对N蛋白SUMO化修饰和病毒复制的影响,为进一步阐明PRRSV复制调控和致病的分子机制提供科学依据。【方法】利用酵母回复杂交、免疫共沉淀和激光共聚焦技术验证N蛋白与PIAS1的相互作用;以递增剂量外源性转染PIAS1观察其是否介导N蛋白SUMO化修饰;采用RNA干扰和慢病毒转导技术测定PIAS1对PRRSV复制的影响。【结果】PIAS1能与N蛋白相互作用,而且两者主要共定位于胞浆中;外源转染PIAS1并未增加N蛋白SUMO化修饰水平;在MARC-145细胞中,PIAS1的表达有利于PRRSV的复制。【结论】PIAS1可促进PRRSV的复制。  相似文献   

7.
8.
冠状病毒(Coronavirus)是具有包膜的正单链RNA病毒,基因组大小介于26 000与32 000 nt之间,编码刺突蛋白(S)、包膜蛋白(E)、膜蛋白(M)和核壳蛋白(N)等四种结构蛋白、复制酶(ORF1a/b)与若干辅助蛋白,部分病毒还具有血细胞凝集素酯酶(HE),这些蛋白除维持病毒结构,还有促进感染与抵抗宿主免疫反应等功能,其中刺突蛋白可与宿主细胞表面的受体结合,使病毒包膜和宿主细胞的膜融合以感染细胞.冠状病毒的感染会影响细胞的许多信号转导途径,引发免疫反应,是一类可感染哺乳动物与鸟类的病毒.  相似文献   

9.
严重急性呼吸综合征(SARS)的元凶是一种新冠状病毒,研究病毒结构蛋白的功能有助于了解病毒的感染、复制和包装等生理过程。其中核衣壳蛋白是SARS冠状病毒中含量最丰富和最保守的结构蛋白,自身聚合后包被病毒RNA基因组形成螺旋状核壳体是SARS冠状病毒成熟的关键步骤;核衣壳蛋白能与病毒或宿主细胞中多种蛋白质相互作用,还能影响宿主细胞的多个通路。因此核衣壳蛋白是一个重要的多功能蛋白质,参与了病毒感染、复制和病毒包装等过程。  相似文献   

10.
猪传染性胃肠炎(transmissible gastroenteritis,TGE)是由猪传染性胃肠炎病毒(transmissible gas-troenteritis virus,TGEV)引起的一种急性、高度接触性传染病,以呕吐、水样腹泻、脱水和对2周龄以内仔猪高度致死率为特征[1]。猪传染性胃肠炎病毒隶属于冠状病毒科冠状病毒属,是引起仔猪病毒性腹泻的重要病原,其基因组为单股正链的有感染性不分节段的RNA,TGEV结构蛋白主要由S、N、Ms、M蛋白组成[2]。其中n基因指导合成病毒的核衣壳蛋白(N),它是一种磷酸化的蛋白,存在于病毒粒子的内部,其分子质量为47kD[3],与病毒基因组组成核衣壳;N…  相似文献   

11.
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.  相似文献   

12.
Li Y  Zhang C  Chen X  Yu J  Wang Y  Yang Y  Du M  Jin H  Ma Y  He B  Cao Y 《The Journal of biological chemistry》2011,286(28):24785-24792
The ICP34.5 protein of herpes simplex virus type 1 is a neurovirulence factor that plays critical roles in viral replication and anti-host responses. One of its functions is to recruit protein phosphatase 1 (PP1) that leads to the dephosphorylation of the α subunit of translation initiation factor eIF2 (eIF2α), which is inactivated by infection-induced phosphorylation. As PP1 is a protein phosphatase with a wide range of substrates, the question remains to be answered how ICP34.5 directs PP1 to specifically dephosphorylate eIF2α. Here we report that ICP34.5 not only binds PP1 but also associates with eIF2α by in vitro and in vivo assays. The binding site of eIF2α is identified at amino acids 233-248 of ICP34.5, which falls in the highly homologous region with human gene growth arrest and DNA damage 34. The interaction between ICP34.5 and eIF2α is independent of the phosphorylation status of eIF2α at serine 51. Deletion mutation of this region results in the failure of dephosphorylation of eIF2α by PP1 and, consequently, interrupts viral protein synthesis and replication. Our data illustrated that the binding between viral protein ICP34.5 and the host eIF2α is crucial for the specific dephosphorylation of eIF2α by PP1. We propose that herpes simplex virus protein ICP34.5 bridges PP1 and eIF2α via their binding motifs and thereby facilitates the protein synthesis and viral replication.  相似文献   

13.
In cells that allow replication of vesicular stomatitis virus (VSV), there are two phases of translation inhibition: an early block of host translation and a later inhibition of viral translation. We investigated the phosphorylation of the alpha subunit of the eIF2 complex during these two phases of viral infection. In VSV-infected cells, the accumulation of phosphorylated (inactivated) eIF2alpha did not begin until well after host protein synthesis was inhibited, suggesting that it only plays a role in blocking viral translation later after infection. Consistent with this, cells expressing an unphosphorylatable eIF2alpha showed prolonged viral protein synthesis without an effect on host protein synthesis inhibition. Induction of eIF2alpha phosphorylation at early times of viral infection by treatment with thapsigargin showed that virus and host translation are similarly inhibited, demonstrating that viral and host messages are similarly sensitive to eIF2alpha phosphorylation. A recombinant virus that expresses a mutant matrix protein and is defective in the inhibition of host and virus protein synthesis showed an altered phosphorylation of eIF2alpha, demonstrating an involvement of viral protein function in inducing this antiviral response. This analysis of eIF2alpha phosphorylation, coupled with earlier findings that the eIF4F complex is modified earlier during VSV infection, supports a temporal/kinetic model of translation control, where at times soon after infection, changes in the eIF4F complex result in the inhibition of host protein synthesis; at later times, inactivation of the eIF2 complex blocks VSV protein synthesis.  相似文献   

14.
Lu B  Ma CH  Brazas R  Jin H 《Journal of virology》2002,76(21):10776-10784
The phosphoprotein (P protein) of respiratory syncytial virus (RSV) is a key component of the viral RNA-dependent RNA polymerase complex. The protein is constitutively phosphorylated at the two clusters of serine residues (116, 117, and 119 [116/117/119] and 232 and 237 [232/237]). To examine the role of phosphorylation of the RSV P protein in virus replication, these five serine residues were altered to eliminate their phosphorylation potential, and the mutant proteins were analyzed for their functions with a minigenome assay. The reporter gene expression was reduced by 20% when all five phosphorylation sites were eliminated. Mutants with knockout mutations at two phosphorylation sites (S232A/S237A [PP2]) and at five phosphorylation sites (S116L/S117R/S119L/S232A/S237A [PP5]) were introduced into the infectious RSV A2 strain. Immunoprecipitation of (33)P(i)-labeled infected cells showed that P protein phosphorylation was reduced by 80% for rA2-PP2 and 95% for rA2-PP5. The interaction between the nucleocapsid (N) protein and P protein was reduced in rA2-PP2- and rA2-PP5-infected cells by 30 and 60%, respectively. Although the two recombinant viruses replicated well in Vero cells, rA2-PP2 and, to a greater extent, rA2-PP5, replicated poorly in HEp-2 cells. Virus budding from the infected HEp-2 cells was affected by dephosphorylation of P protein, because the majority of rA2-PP5 remained cell associated. In addition, rA2-PP5 was also more attenuated than rA2-PP2 in replication in the respiratory tracts of mice and cotton rats. Thus, our data suggest that although the major phosphorylation sites of RSV P protein are dispensable for virus replication in vitro, phosphorylation of P protein is required for efficient virus replication in vitro and in vivo.  相似文献   

15.
African swine fever virus (ASFV) infection leads to rearrangement of vimentin into a cage surrounding virus factories. Vimentin rearrangement in cells generally involves phosphorylation of N-terminal domains of vimentin by cellular kinases to facilitate disassembly and transport of vimentin filaments on microtubules. Here, we demonstrate that the first stage in vimentin rearrangement during ASFV infection involves a microtubule-dependent concentration of vimentin into an "aster" within virus assembly sites located close to the microtubule organizing center. The aster may play a structural role early during the formation of the factory. Conversion of the aster into a cage required ASFV DNA replication. Interestingly, viral DNA replication also resulted in the activation of calcium calmodulin-dependent protein kinase II (CaM kinase II) and phosphorylation of the N-terminal domain of vimentin on serine 82. Immunostaining showed that vimentin within the cage was phosphorylated on serine 82. Significantly, both viral DNA replication and Ser 82 phosphorylation were blocked by KN93, an inhibitor of CaM kinase II, suggesting a link between CaM kinase II activation, DNA replication, and late gene expression. Phosphorylation of vimentin on serine 82 may be necessary for cage formation or may simply be a consequence of activation of CaM kinase II by ASFV. The vimentin cage may serve a cytoprotective function and prevent movement of viral components into the cytoplasm and at the same time concentrate late structural proteins at sites of virus assembly.  相似文献   

16.
Hepatitis C virus (HCV) is a positive-strand RNA virus that frequently causes persistent infection associated with severe liver disease. HCV nonstructural protein 5A (NS5A) is essential for viral replication. Here, the kinase Raf-1 was identified as a novel cellular binding partner of NS5A, binding to the C-terminal domain of NS5A. Raf-1 colocalizes with NS5A in the HCV replication complex. The interaction of NS5A with Raf-1 results in increased Raf-1 phosphorylation at serine 338. Integrity of Raf-1 is crucial for HCV replication: inhibition of Raf-1 by the small-molecule inhibitor BAY43-9006 or downregulation of Raf-1 by siRNA attenuates viral replication.  相似文献   

17.
Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.  相似文献   

18.
19.
20.
In this report, we present biochemical and mutational analyses of the duck hepatitis B virus core protein (DHBcAg). The data show that duck hepatitis B virus core particles consist of at least four different proteins with sizes between 32 and 34 kilodaltons, all of which react with DHBcAg-specific antiserum. Most of the heterogeneity was found to be due to extensive phosphorylation of the DHBcAg C terminus. Bacterially synthesized DHBcAg was not phosphorylated, and mutations within the viral P gene did not influence phosphorylation, suggesting that the kinase activity is not encoded by the viral C or P gene. Removal of the last 12 C-terminal DHBcAg amino acids, which are at least in part located on the core particle surface, had only a minor effect on DHBcAg phosphorylation and did not interfere with packaging of the capsids into viral envelopes or with genome replication. However, an attempt to infect ducklings with this mutant failed. Removal of the last 36 C-terminal DHBcAg amino acids abolished core protein heterogeneity but did not prevent particle formation. Interestingly, these particles were defective in genome replication, although they could still package viral pregenomic RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号