首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the fundamental questions regarding the pathogenesis of Alzheimer's disease (AD) is how the monomeric, nontoxic amyloid beta-protein (Abeta) is converted to its toxic assemblies in the brain. A unique Abeta species was identified previously in an AD brain, which is characterized by its binding to the GM1 ganglioside (GM1). On the basis of the molecular characteristics of this GM1-bound Abeta (GAbeta), it was hypothesized that Abeta adopts an altered conformation through its binding to GM1, and GAbeta acts as a seed for Abeta fibrillogenesis in an AD brain. To date, various in vitro and in vivo studies of GAbeta have been performed, and their results support the hypothesis. Using a novel monoclonal antibody specific to GAbeta, it was confirmed that GAbeta is endogenously generated in the brain. Regarding the role of gangliosides in the facilitation of Abeta assembly, it has recently been reported that region-specific deposition of hereditary variant-type Abetas is determined by local gangliosides in the brain. Furthermore, it is likely that risk factors for AD, including aging and the expression of apolipoprotein E4, alter GM1 distribution on the neuronal surface, leading to GAbeta generation.  相似文献   

2.
The deposition of amyloid beta-protein (Abeta) is an invariable feature of Alzheimer's disease (AD); however, the biological mechanism underlying Abeta assembly into fibrils in the brain remains unclear. Here, we show that a high-density cluster of GM1 ganglioside (GM1), which was detected by the specific binding of a novel peptide (p3), appeared selectively on synaptosomes prepared from aged mouse brains. Notably, the synaptosomes bearing the high-density GM1 cluster showed extraordinary potency to induce Abeta assembly, which was suppressed by an antibody specific to GM1-bound Abeta, an endogenous seed for AD amyloid. Together with evidence that Abeta deposition starts at presynaptic terminals in the AD brain and that GM1 levels significantly increase in amyloid-positive synaptosomes prepared from the AD brain, our results suggest that the age-dependent high-density GM1 clustering at presynaptic neuritic terminals is a critical step for Abeta deposition in AD.  相似文献   

3.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.  相似文献   

4.
The deposition of aggregated amyloid beta-protein (Abeta) in the human brain is a major lesion in Alzheimer' disease (AD). The process of Abeta fibril formation is associated with a cascade of neuropathogenic events that induces brain neurodegeneration leading to the cognitive and behavioral decline characteristic of AD. Although a detailed knowledge of Abeta assembly is crucial for the development of new therapeutic approaches, our understanding of the molecular mechanisms underlying the initiation of Abeta fibril formation remains very incomplete. The genetic defects responsible for familial AD influence fibrillogenesis. In a majority of familial cases determined by amyloid precursor protein (APP) and presenilin (PS) mutations, a significant overproduction of Abeta and an increase in the Abeta42/Abeta40 ratio are observed. Recently, it was shown that the two main alloforms of Abeta have distinct biological activity and behaviour at the earliest stage of assembly. In vitro studies demonstrated that Abeta42 monomers, but not Abeta40, form initial and minimal structures (pentamer/hexamer units called paranuclei) that can oligomerize to larger forms. It is now apparent that Abeta oligomers and protofibrils are more neurotoxic than mature Abeta fibrils or amyloid plaques. The neurotoxicity of the prefibrillar aggregates appears to result from their ability to impair fundamental cellular processes by interacting with the cellular membrane, causing oxidative stress and increasing free Ca(2+) that eventually lead to apoptotic cell death.  相似文献   

5.
Amyloid plaques composed of the peptide Abeta are an integral part of Alzheimer's disease (AD) pathogenesis. We have modeled the process of amyloid plaque growth by monitoring the deposition of soluble Abeta onto amyloid in AD brain tissue or synthetic amyloid fibrils and show that it is mediated by two distinct kinetic processes. In the first phase, "dock", Abeta addition to the amyloid template is fully reversible (dissociation t(1/2) approximately 10 min), while in the second phase, "lock", the deposited peptide becomes irreversibly associated (dissociation t(1/2) > 1000 min) with the template in a time-dependent manner. The most recently deposited peptide dissociates first while Abeta previously deposited becomes irreversibly "locked" onto the template. Thus, the transition from monomer to neurotoxic amyloid is mediated by interaction with the template, a mechanism that has also been proposed for the prion diseases. Interestingly, two Abeta peptides bearing primary sequence alterations implicated in heritable Abeta amyloidoses displayed faster lock-phase kinetics than wild-type Abeta. Inhibiting the initial weak docking interaction between depositing Abeta and the template is a viable therapeutic target to prevent the critical conformational transition in the conversion of Abeta((solution)) to Abeta((amyloid)) and thus prevent stable amyloid accumulation. While thermodynamics suggest that inhibiting amyloid assembly would be difficult, the present study illustrates that the protein misfolding diseases are kinetically vulnerable to intervention.  相似文献   

6.
Senile plaques composed of the peptide Abeta contribute to the pathogenesis of Alzheimer's disease (AD), and mechanisms underlying their formation and growth may be exploitable as therapeutic targets. To examine the process of amyloid plaque growth in human brain, we have utilized size exclusion chromatography (SEC), translational diffusion measured by NMR, and in vitro models of Abeta amyloid growth to identify the oligomerization state of Abeta that is competent to add onto an existing amyloid deposit. SEC of radiolabeled and unlabeled Abeta over a concentration range of 10(-)(10)-10(-)(4) M demonstrated that the freshly dissolved peptide eluted as a single low molecular weight species, consistent with monomer or dimer. This low molecular weight Abeta species isolated by SEC was competent to deposit onto preexisting amyloid in preparations of AD cortex, with first-order kinetic dependence on soluble Abeta concentration, establishing that solution-phase oligomerization is not rate limiting. Translational diffusion measurements of the low molecular weight Abeta fraction demonstrate that the form of the peptide active in plaque deposition is a monomer. In deliberately aged (>6 weeks) Abeta solutions, a high molecular weight (>100 000 M(r)) species was detectable in the SEC column void. In contrast to the active monomer, assembled Abeta isolated from the column showed little or no focal association with AD tissue. These studies establish that, at least in vitro, Abeta exists as a monomer at physiological concentrations and that deposition of monomers, rather than of oligomeric Abeta assemblies, mediates the growth of existing amyloid in human brain preparations.  相似文献   

7.
Parenteral immunization of transgenic mouse models of Alzheimer disease (AD) with synthetic amyloid beta-peptide (Abeta) prevented or reduced Abeta deposits and attenuated their memory and learning deficits. A clinical trial of immunization with synthetic Abeta, however, was halted due to brain inflammation, presumably induced by a toxic Abeta, T-cell- and/or Fc-mediated immune response. Another issue relating to such immunizations is that some AD patients may not be able to raise an adequate immune response to Abeta vaccination due to immunological tolerance or age-associated decline. Because peripheral administration of antibodies against Abeta also induced clearance of amyloid plaques in the model mice, injection of humanized Abeta antibodies has been proposed as a possible therapy for AD. By screening a human single-chain antibody (scFv) library for Abeta immunoreactivity, we have isolated a scFv that specifically reacts with oligomeric Abeta as well as amyloid plaques in the brain. The scFv inhibited Abeta amyloid fibril formation and Abeta-mediated cytotoxicity in vitro. We have tested the efficacy of the human scFv in a mouse model of AD (Tg2576 mice). Relative to control mice, injections of the scFv into the brain of Tg2576 mice reduced Abeta deposits. Because scFvs lack the Fc portion of the immunoglobulin molecule, human scFvs against Abeta may be useful to treat AD patients without eliciting brain inflammation.  相似文献   

8.
Aggregation of the 40-42 residue amyloid beta-peptide (Abeta) into amyloid plaques is a central event in Alzheimer's disease (AD) pathogenesis. Many proteins have by immunohistochemical techniques been shown to codeposit with Abeta in AD plaques. It is possible that some of these could seed Abeta aggregation and therefore be found in the actual core of the plaque. Here, we present a highly sensitive method for unbiased biochemical analysis of plaque cores. A mild purification protocol based on centrifugation and filtration was used to purify intact plaque cores from human AD brain. The purified plaques were dispensed on a glass slide and viewed in a laser capture microscope, and plaque cores were catapulted into a tube cap by a laser beam. After dissolution in formic acid, plaques were digested and analyzed by liquid chromatography coupled online to electrospray/tandem mass spectrometry. One single plaque was found to be sufficient for positive identification of the main amyloid component. Remarkably, Abeta was the only protein identified when 200 plaques were isolated and analyzed with the present method. Thus, it is possible that no proteins copolymerize with Abeta in the plaque cores and that Abeta alone is sufficient for formation of plaque cores. In support of this notion, core-like structures were observed after incubation of synthetic Abeta for 2 weeks. We suggest that the method described here could be used for the general analysis of amyloid aggregates and inclusion bodies found in other neurodegenerative disorders and that plaque cores in AD brain are molecularly homogeneous structures.  相似文献   

9.
Ha C  Ryu J  Park CB 《Biochemistry》2007,46(20):6118-6125
The abnormal deposition and aggregation of beta-amyloid (Abeta) on brain tissues are considered to be one of the characteristic neuropathological features of Alzheimer's disease (AD). Environmental conditions such as metal ions, pH, and cell membranes are associated with Abeta deposition and plaque formation. According to the amyloid cascade hypothesis of AD, the deposition of Abeta42 oligomers as diffuse plaques in vivo is an important earliest event, leading to the formation of fibrillar amyloid plaques by the further accumulation of soluble Abeta under certain environmental conditions. In order to characterize the effect of metal ions on amyloid deposition and plaque growth on a solid surface, we prepared a synthetic template by immobilizing Abeta oligomers onto a N-hydroxysuccinimide ester-activated solid surface. According to our study using ex situ atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and thioflavin T (ThT) fluorescence spectroscopy, Cu2+ and Zn2+ ions accelerated both Abeta40 and Abeta42 deposition but resulted only in the formation of "amorphous" aggregates. In contrast, Fe3+ induced the deposition of "fibrillar" amyloid plaques at neutral pH. Under mildly acidic environments, the formation of fibrillar amyloid plaques was not induced by any metal ion tested in this work. Using secondary ion mass spectroscopy (SIMS) analysis, we found that binding Cu ions to Abeta deposits on a solid template occurred by the possible reduction of Cu ions during the interaction of Abeta with Cu2+. Our results may provide insights into the role of metal ions on the formation of fibrillar or amorphous amyloid plaques in AD.  相似文献   

10.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

11.
Epidemiological evidence suggests that moderate consumption of red wine reduces the incidence of Alzheimer disease (AD). To study the protective effects of red wine, experiments recently were executed in the Tg2576 mouse model of AD. These studies showed that a commercially available grape seed polyphenolic extract, MegaNatural-AZ (MN), significantly attenuated AD-type cognitive deterioration and reduced cerebral amyloid deposition (Wang, J., Ho, L., Zhao, W., Ono, K., Rosensweig, C., Chen, L., Humala, N., Teplow, D. B., and Pasinetti, G. M. (2008) J. Neurosci. 28, 6388-6392). To elucidate the mechanistic bases for these observations, here we used CD spectroscopy, photo-induced cross-linking of unmodified proteins, thioflavin T fluorescence, size exclusion chromatography, and electron microscopy to examine the effects of MN on the assembly of the two predominant disease-related amyloid beta-protein alloforms, Abeta40 and Abeta42. We also examined the effects of MN on Abeta-induced cytotoxicity by assaying 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide metabolism and lactate dehydrogenase activity in Abeta-treated, differentiated pheochromocytoma (PC12) cells. Initial studies revealed that MN blocked Abeta fibril formation. Subsequent evaluation of the assembly stage specificity of the effect showed that MN was able to inhibit protofibril formation, pre-protofibrillar oligomerization, and initial coil --> alpha-helix/beta-sheet secondary structure transitions. Importantly, MN had protective effects in assays of cytotoxicity in which MN was mixed with Abeta prior to peptide assembly or following assembly and just prior to peptide addition to cells. These data suggest that MN is worthy of consideration as a therapeutic agent for AD.  相似文献   

12.
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized clinically by progressive loss of memory and cognitive function and eventually death. Neuropathologically, AD is characterized by amyloid deposits or "senile plaques," which consist mainly of aggregated variants of amyloid beta-protein (Abeta). Abeta undergoes a conformational transition from random coil to ordered structure rich in beta-sheets, especially after addition of lipid vesicles containing GM1 ganglioside. In AD brain, a complex of GM1 and Abeta, termed "GAbeta," has been found to accumulate. In recent years, Abeta and GM1 have been identified in microdomains or lipid rafts. The functional roles of these microdomains in cellular processes are now beginning to unfold. Several articles also have documented the involvement of these microdomains in the pathogenesis of certain neurodegenerative diseases, such as AD. A pivotal neuroprotective role of gangliosides has been reported in in vivo and in vitro models of neuronal injury, Parkinsonism, and related diseases. Here we describe the possible involvement of gangliosides in the development of AD and the therapeutic potentials of gangliosides in this disorder.  相似文献   

13.
Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid accumulation in the brain remain unclear. We provide evidence that treatment of AD mutant neuroblastoma cells or primary neurons with Abeta antibodies decreases levels of intracellular Abeta. Antibody-mediated reduction in cellular Abeta appears to require that the antibody binds to the extracellular Abeta domain of the amyloid precursor protein (APP) and be internalized. In addition, treatment with Abeta antibodies protects against synaptic alterations that occur in APP mutant neurons.  相似文献   

14.
Deposition of fibrillar amyloid beta-protein (Abeta) in the brain is a prominent pathological feature of Alzheimer disease and related disorders, including familial forms of cerebral amyloid angiopathy (CAA). Mutant forms of Abeta, including Dutch- and Iowa-type Abeta, which are responsible for familial CAA, deposit primarily as fibrillar amyloid along the cerebral vasculature and are either absent or present only as diffuse non-fibrillar plaques in the brain parenchyma. Despite the lack of parenchymal fibril formation in vivo, these CAA mutant Abeta peptides exhibit a markedly increased rate and extent of fibril formation in vitro compared with wild-type Abeta. Based on these conflicting observations, we sought to determine whether brain parenchymal factors that selectively interact with and modulate CAA mutant Abeta fibril assembly exist. Using a combination of immunoaffinity chromatography and mass spectrometry, we identified myelin basic protein (MBP) as a prominent brain parenchymal factor that preferentially binds to CAA mutant Abeta compared with wild-type Abeta. Surface plasmon resonance measurements confirmed that MBP bound more tightly to Dutch/Iowa CAA double mutant Abeta than to wild-type Abeta. Using a combination of biochemical and ultrastructural techniques, we found that MBP inhibited the fibril assembly of CAA mutant Abeta. Together, these findings suggest a possible role for MBP in regulating parenchymal fibrillar Abeta deposition in familial CAA.  相似文献   

15.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

16.
17.
Immunization with amyloid-beta (Abeta) prevents the deposition of Abeta in the brain and memory deficits in transgenic mouse models of Alzheimer's disease (AD), opening the possibility for immunotherapy of AD in humans. Unfortunately, the first human trial of Abeta vaccination was complicated, in a small number of vaccinees, by cell-mediated meningoencephalitis. To develop an Abeta vaccine that lacks the potential to induce autoimmune encephalitis, we have generated papillomavirus-like particles (VLP) that display 1-9 aa of Abeta protein repetitively on the viral capsid surface (Abeta-VLP). This Abeta peptide was chosen because it contains a functional B cell epitope, but lacks known T cell epitopes. Rabbit and mouse vaccinations with Abeta-VLP were well tolerated and induced high-titer autoAb against Abeta, that inhibited effectively assembly of Abeta(1-42) peptides into neurotoxic fibrils in vitro. Following Abeta-VLP immunizations of APP/presenilin 1 transgenic mice, a model for human AD, we observed trends for reduced Abeta deposits in the brain and increased numbers of activated microglia. Furthermore, Abeta-VLP vaccinated mice also showed increased levels of Abeta in plasma, suggesting efflux from the brain into the vascular compartment. These results indicate that the Abeta-VLP vaccine induces an effective humoral immune response to Abeta and may thus form a basis to develop a safe and efficient immunotherapy for human AD.  相似文献   

18.
We investigated the molecular mechanism underlying the ganglioside-induced initiation of the assembly of wild and hereditary variant-type amyloid beta-proteins, including Arctic-, Dutch-, and Flemish-type amyloid beta-proteins. We monitored the assembly of amyloid beta-protein by thioflavin-T assay, western blotting and electron microscopy. We also examined how externally added amyloid beta-protein assembles in a cell culture. The assembly of wild-, Arctic-, Dutch-, and Flemish-type amyloid beta-proteins were accelerated in the presence of GM1, GM1, GM3 and GD3 gangliosides. Notably, all of these amyloid beta-proteins accelerated the assembly of different type of amyloid beta-protein, following prior binding to a specific ganglioside. A specific-ganglioside-bound form of variant-type amyloid beta-protein was recognized by the antibody (4396C) specific to the GM1-ganglioside-induced altered conformation of wild-type amyloid beta-protein. Moreover, the assembly of these amyloid beta-proteins in the presence of a specific ganglioside was markedly suppressed by coincubation with 4396C. This study suggests that cross-seeding can occur between wild and hereditary variant-type amyloid beta-proteins despite differences in their amino acid sequences.  相似文献   

19.
Studies in transgenic mice bearing mutated human Alzheimer disease (AD) genes show that active vaccination with the amyloid beta (Abeta) protein or passive immunization with anti-Abeta antibodies has beneficial effects on the development of disease. Although a trial of Abeta vaccination in humans was halted because of autoimmune meningoencephalitis, favorable effects on Abeta deposition in the brain and on behavior were seen. Conflicting results have been observed concerning the relationship of circulating anti-Abeta antibodies and AD. Although these autoantibodies are thought to arise from exposure to Abeta, it is also possible that homologous proteins may induce antibody synthesis. We propose that the long-standing presence of anti-Abeta antibodies or antibodies to immunogens homologous to the Abeta protein may produce protective effects. The amino acid sequence of the potato virus Y (PVY) nuclear inclusion b protein is highly homologous to the immunogenic N-terminal region of Abeta. PVY infects potatoes and related crops worldwide. Here, we show through immunocytochemistry, enzyme-linked immunosorbent assay, and NMR studies that mice inoculated with PVY develop antibodies that bind to Abeta in both neuritic plaques and neurofibrillary tangles, whereas antibodies to material from uninfected potato leaf show only modest levels of background immunoreactivity. NMR data show that the anti-PVY antibody binds to Abeta within the Phe4-Ser8 and His13-Leu17 regions. Immune responses generated from dietary exposure to proteins homologous to Abeta may induce antibodies that could influence the normal physiological processing of the protein and the development or progression of AD.  相似文献   

20.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号