首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Immunization of amyloid precursor protein transgenic mice with fibrillar beta-amyloid (Abeta) prevents Alzheimer's disease (AD)-like neuropathology. The first immunotherapy clinical trial used fibrillar Abeta, containing the B and T cell self epitopes of Abeta, as the immunogen formulated with QS21 as the adjuvant in the vaccine. Unfortunately, the clinical trial was halted during the phase II stage when 6% of the participants developed meningoencephalitis. The cause of the meningoencephalitis in the patients that received the vaccine has not been definitively determined; however, analysis of two case reports from the AN-1792 vaccine trial suggest that the meningoencephalitis may have been caused by a T cell-mediated autoimmune response, whereas production of anti-Abeta Abs may have been therapeutic to the AD patients. Therefore, to reduce the risk of an adverse T cell-mediated immune response to Abeta immunotherapy we have designed a prototype epitope vaccine that contains the immunodominant B cell epitope of Abeta in tandem with the synthetic universal Th cell pan HLA DR epitope, pan HLA DR-binding peptide (PADRE). Importantly, the PADRE-Abeta(1-15) sequence lacks the T cell epitope of Abeta. Immunization of BALB/c mice with the PADRE-Abeta(1-15) epitope vaccine produced high titers of anti-Abeta Abs. Splenocytes from immunized mice showed robust T cell stimulation in response to peptides containing PADRE. However, splenocytes from immunized mice were not reactivated by the Abeta peptide. New preclinical trials in amyloid precursor protein transgenic mouse models may help to develop novel immunogen-adjuvant configurations with the potential to avoid the adverse events that occurred in the first clinical trial.  相似文献   

2.
Aging and apolipoprotein E (APOE) isoform are among the most consistent risks for the development of Alzheimer's disease (AD). Metabolic factors that modulate risk have been elusive, though oxidative reactions and their by-products have been implicated in human AD and in transgenic mice with overt histological amyloidosis. We investigated the relationship between the levels of endogenous murine amyloid beta (Abeta) peptides and the levels of a marker of oxidation in mice that never develop histological amyloidosis [i.e. APOE knockout (KO) mice with or without transgenic human APOEepsilon3 or human APOEepsilon4 alleles]. Aging-, gender-, and APOE-genotype-dependent changes were observed for endogenous mouse brain Abeta40 and Abeta42 peptides. Levels of the oxidized lipid F2-isoprostane (F2-isoPs) in the brains of the same animals as those used for the Abeta analyses revealed aging- and gender-dependent changes in APOE KO and in human APOEepsilon4 transgenic KO mice. Human APOEepsilon3 transgenic KO mice did not exhibit aging- or gender-dependent increases in F2-isoPs. In general, the changes in the levels of brain F2-isoPs in mice according to age, gender, and APOE genotype mirrored the changes in brain Abeta levels, which, in turn, paralleled known trends in the risk for human AD. These data indicate that there exists an aging-dependent, APOE-genotype-sensitive rise in murine brain Abeta levels despite the apparent inability of the peptide to form histologically detectable amyloid. Human APOEepsilon3, but not human APOEepsilon4, can apparently prevent the aging-dependent rise in murine brain Abeta levels, consistent with the relative risk for AD associated with these genotypes. The fidelity of the brain Abeta/F2-isoP relationship across multiple relevant variables supports the hypothesis that oxidized lipids play a role in AD pathogenesis, as has been suggested by recent evidence that F2-isoPs can stimulate Abeta generation and aggregation.  相似文献   

3.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

4.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by overproduction of beta-amyloid (Abeta), which is formed from amyloid precursor protein (APP), with the subsequent pathologic deposition of Abeta in regions of the brain important for memory and cognition. Recently, vaccination of murine models of AD that exhibit Abeta deposition has halted or delayed the usual progression of the pathology of AD. Our group has demonstrated that vaccination of a doubly transgenic mouse model (expressing mutant APP and presenilin-1) with the Abeta 1-42 peptide protects these mice from the memory deficits they would ordinarily develop. This report further characterizes the Abeta 1-42 peptide vaccine in mice. Anti-Abeta response time course analysis indicated that at least three vaccinations (each 100 microg) were necessary to elicit a significant anti-Abeta titer. Subsequent vaccinations resulted in half-maximal antibody titers of at least 10,000, and these titers were maintained for at least 5 months after the final boost. Peptide binding competition studies indicated that the highest humoral responses are generated against the N terminus of the Abeta peptide. Also, measurement of specific murine Ig isotypes in Abeta-vaccinated mice demonstrated a predominant IgG(1) and IgG(2b) response, suggesting a type 2 (Th2) T-helper cell immune response, which drives humoral immunity. Finally, lymphocyte proliferation assay experiments using Abeta peptides and splenocytes from vaccinated mice demonstrated that the vaccine specifically stimulates T-cell epitopes present within the Abeta peptide.  相似文献   

5.
The incidence of Alzheimer's disease (AD) is greater in women than men at any age, as is the development of amyloid pathology in several transgenic mouse models of AD. Due to the involvement of metals in AD pathogenesis, variations between the sexes in metal metabolism may contribute to the sex difference in AD risk. In this study, we investigated sex differences in brain metal levels across the lifespan in mice of two different background strains, as well as in mice overexpressing the human amyloid precursor protein (APP) and amyloid-beta protein (Abeta). We demonstrate consistently lower Cu and higher Mn levels in females compared with males at any age studied. The sex differences in Cu and Mn levels are independent of APP/Abeta expression. AD brain exhibits decreased Cu and increased Mn levels, as do transgenic mice overexpressing APP or Abeta. The age-dependent elevations of Cu, Fe and Co levels were found to be significantly greater in mice of B6/SJL background compared with B6/DBA. If depleting Cu and/or rising Mn levels contribute to AD pathogenesis, natural sex differences in these brain metal levels may contribute to the increased propensity of females to develop AD.  相似文献   

6.
LRP (low-density lipoprotein receptor-related protein) is linked to Alzheimer's disease (AD). Here, we report amyloid beta-peptide Abeta40 binds to immobilized LRP clusters II and IV with high affinity (Kd = 0.6-1.2 nM) compared to Abeta42 and mutant Abeta, and LRP-mediated Abeta brain capillary binding, endocytosis, and transcytosis across the mouse blood-brain barrier are substantially reduced by the high beta sheet content in Abeta and deletion of the receptor-associated protein gene. Despite low Abeta production in the brain, transgenic mice expressing low LRP-clearance mutant Abeta develop robust Abeta cerebral accumulations much earlier than Tg-2576 Abeta-overproducing mice. While Abeta does not affect LRP internalization and synthesis, it promotes proteasome-dependent LRP degradation in endothelium at concentrations > 1 microM, consistent with reduced brain capillary LRP levels in Abeta-accumulating transgenic mice, AD, and patients with cerebrovascular beta-amyloidosis. Thus, low-affinity LRP/Abeta interaction and/or Abeta-induced LRP loss at the BBB mediate brain accumulation of neurotoxic Abeta.  相似文献   

7.
Parenteral immunization of transgenic mouse models of Alzheimer disease (AD) with synthetic amyloid beta-peptide (Abeta) prevented or reduced Abeta deposits and attenuated their memory and learning deficits. A clinical trial of immunization with synthetic Abeta, however, was halted due to brain inflammation, presumably induced by a toxic Abeta, T-cell- and/or Fc-mediated immune response. Another issue relating to such immunizations is that some AD patients may not be able to raise an adequate immune response to Abeta vaccination due to immunological tolerance or age-associated decline. Because peripheral administration of antibodies against Abeta also induced clearance of amyloid plaques in the model mice, injection of humanized Abeta antibodies has been proposed as a possible therapy for AD. By screening a human single-chain antibody (scFv) library for Abeta immunoreactivity, we have isolated a scFv that specifically reacts with oligomeric Abeta as well as amyloid plaques in the brain. The scFv inhibited Abeta amyloid fibril formation and Abeta-mediated cytotoxicity in vitro. We have tested the efficacy of the human scFv in a mouse model of AD (Tg2576 mice). Relative to control mice, injections of the scFv into the brain of Tg2576 mice reduced Abeta deposits. Because scFvs lack the Fc portion of the immunoglobulin molecule, human scFvs against Abeta may be useful to treat AD patients without eliciting brain inflammation.  相似文献   

8.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

9.
In Alzheimer's disease (AD) the accumulation of pathological forms of the beta-amyloid (Abeta) peptide are believed to be causal factors in the neurodegeneration that results in the loss of cognitive function in patients. Anti-Abeta antibodies have been shown to reduce Abeta levels in transgenic mouse models of AD and in AN-1792 clinical trial on AD patients; however, the clinical trial was halted when some patients developed meningoencephalitis. Theories on the cause of the adverse events include proinflammatory "primed patients," a Th1-inducing adjuvant, and Abeta autoreactive T cells. New immunotherapy approaches are being developed to eliminate these putative risk factors. Mannan, which is recognized by pattern recognition receptors of the innate immune system, can be utilized as a molecular adjuvant to promote a Th2-mediated immune response to conjugated B cell epitopes. The N-terminus of Abeta was conjugated to mannan, and used to immunize mice with low concentrations of immunoconjugate, without a conventional adjuvant. Mannan induced a significant and highly polarized toward Th2 phenotype anti-Abeta antibody response not only in BALB/c, but also in B6SJL F1 mice. New preclinical trials in AD mouse models may help to develop novel immunogen-adjuvant configurations with the potential to avoid the adverse immune response that occurred in the first clinical trial.  相似文献   

10.
Although the pathogenesis of Alzheimer's disease (AD) is not fully understood, growing evidence indicates that the deposition of beta-amyloid (Abeta) and the local reactions of various cell types to this protein play major roles in the development of the disease. Immunization with the Abeta 1-42 peptide has been reported to decrease Abeta deposits in the brains of mutant amyloid precursor protein (APP/V717F) transgenic (tg) mice (Schenk et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173-177). We have replicated this finding in APPswe/PS1DeltaE9 tg mice, which also develop Abeta deposits in the brain. The immunized animals developed high titers of antibodies against Abeta 1-42 in serum, and Abeta deposits in the brains were significantly reduced. Using surface-enhanced laser desorption/ionization (SELDI) mass spectrometry and ProteinChip((R)) technology, we detected trends toward increased soluble Abeta peptide in the brain and a decrease in assayable Abeta peptide in the serum of immunized compared with control animals. This last finding raises the possibility that anti-Abeta antibodies in the periphery sequester Abeta peptides or target them for degradation and in this way contribute to the enhanced Abeta clearance from the brain in immunized animals.  相似文献   

11.
The aspartyl protease beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid beta (Abeta) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Abeta-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Abeta generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Abeta generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Abeta levels in young mice, it nonetheless resulted in a dramatic reduction in Abeta plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Abeta levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Abeta levels lead to dramatic inhibition of Abeta-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD.  相似文献   

12.
In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice.  相似文献   

13.
Active or passive immunization against the beta-amyloid peptide (Abeta) has been proposed as a method for preventing and/or treating Alzheimer's disease (AD). In addition to lowering brain Abeta and amyloid burden in transgenic mouse models of AD, a beneficial effect of immunization on previously characterized memory impairment(s) has also been reported in these mice. Whether these preclinical data will predict efficacy in AD patients remains to be seen. A clinical trial of active immunization (vaccination) was halted, owing to a serious adverse event (meningoencephalitis), raising questions about the safety of this approach. Two recent reports suggest that immunotherapy-based approaches to treating and preventing AD will require careful antigen and antibody selection, to maximize efficacy and minimize serious adverse events. However, given the potential efficacy of this approach, we believe that immunotherapy for AD should not be prematurely abandoned.  相似文献   

14.
Increased brain metal levels have been associated with normal aging and a variety of diseases, including Alzheimer's disease (AD). Copper and iron levels both show marked increases with age and may adversely interact with the amyloid-beta (Abeta) peptide causing its aggregation and the production of neurotoxic hydrogen peroxide (H(2)O(2)), contributing to the pathogenesis of AD. Amyloid precursor protein (APP) possesses copper/zinc binding sites in its amino-terminal domain and in the Abeta domain. Here we demonstrate that overexpression of the carboxyl-terminal fragment of APP, containing Abeta, results in significantly reduced copper and iron levels in transgenic mouse brain, while overexpression of the APP in Tg2576 transgenic mice results in significantly reduced copper, but not iron, levels prior to the appearance of amyloid neuropathology and throughout the lifespan of the mouse. Concomitant increases in brain manganese levels were observed with both transgenic strains. These findings, complemented by our previous findings of elevated copper levels in APP knock-out mice, support roles for APP and Abeta in physiological metal regulation.  相似文献   

15.
Assembly and deposition of amyloid beta-protein (Abeta) in the brain is a fundamental process of Alzheimer's disease (AD). We previously hypothesized that GM1 ganglioside-bound Abeta (GAbeta) is an endogenous seed for Abeta assembly in brain. Recently, we have succeeded in generation of a monoclonal antibody specific to GAbeta. Notably, this antibody, 4396C, per se substantially inhibits Abeta assembly in vitro. Here we report that the peripheral administration of Fab fragments of 4396C into transgenic mice expressing a mutant amyloid precursor protein gene, following the conjugation of the protein transduction domain of the Tat protein, markedly suppressed Abeta deposition in the brain. This result further supports our previous hypothesis and also provides a new insight into develop AD therapy through targeting seed Abeta in the brain, which selectively inhibits the initial step of the pathological process of AD.  相似文献   

16.
Abnormal accumulation of the amyloid-beta peptide (Abeta) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor beta1 (TGF-beta1), a key regulator of the brain's responses to injury and inflammation, has been implicated in Abeta deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-beta1 production in aged transgenic mice expressing the human beta-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Abeta load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-beta1, Abeta accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Abeta immunoreactivity associated with parenchymal plaques was inversely correlated with Abeta in blood vessels and cortical TGF-beta1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-beta1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-beta1 stimulated Abeta clearance in microglial cell cultures. These results demonstrate that TGF-beta1 is an important modifier of amyloid deposition in vivo and indicate that TGF-beta1 might promote microglial processes that inhibit the accumulation of Abeta in the brain parenchyma.  相似文献   

17.
We have undertaken an integrated chemical and morphological comparison of the amyloid-beta (Abeta) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. Abeta chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse Abeta provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for Abeta structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions.  相似文献   

18.
Amyloid-beta peptide (Abeta) has a key role in the pathogenesis of Alzheimer disease (AD). Immunization with Abeta in a transgenic mouse model of AD reduces both age-related accumulation of Abeta in the brain and associated cognitive impairment. Here we present the first analysis of human neuropathology after immunization with Abeta (AN-1792). Comparison with unimmunized cases of AD (n = 7) revealed the following unusual features in the immunized case, despite diagnostic neuropathological features of AD: (i) there were extensive areas of neocortex with very few Abeta plaques; (ii) those areas of cortex that were devoid of Abeta plaques contained densities of tangles, neuropil threads and cerebral amyloid angiopathy (CAA) similar to unimmunized AD, but lacked plaque-associated dystrophic neurites and astrocyte clusters; (iii) in some regions devoid of plaques, Abeta-immunoreactivity was associated with microglia; (iv) T-lymphocyte meningoencephalitis was present; and (v) cerebral white matter showed infiltration by macrophages. Findings (i)-(iii) strongly resemble the changes seen after Abeta immunotherapy in mouse models of AD and suggest that the immune response generated against the peptide elicited clearance of Abeta plaques in this patient. The T-lymphocyte meningoencephalitis is likely to correspond to the side effect seen in some other patients who received AN-1792 (refs. 7-9).  相似文献   

19.
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.  相似文献   

20.
Abnormally high concentrations of beta-amyloid peptide (Abeta) and amyloid plaque formation in Alzheimer's disease (AD) may be caused either by increased generation or by decreased degradation of Abeta. Therefore, activation of mechanisms that lower brain Abeta levels is considered valuable for AD therapy. Neuronal upregulation of neprilysin (NEP) in young transgenic mice expressing the AD-causing amyloid precursor protein mutations (SwAPP) led to reduction of brain Abeta levels and delayed Abeta plaque deposition. In contrast, a comparable increase of brain NEP levels in aged SwAPP mice with pre-existing plaque pathology did not result in a significant reduction of plaque pathology. Therefore, we suggest that the potential of NEP for AD therapy is age-dependent and most effective early in the course of AD pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号