首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
Ferroptosis,an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsatu-rated-fatty-acid-containing phospholipids in cellular membranes,has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression,and to mediate the synergy between radiotherapy and immunotherapy.In this review,we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and fer-roptosis,discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy,and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy.This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.  相似文献   

3.
Macroautophagy/autophagy is an evolutionarily conserved degradation pathway that maintains homeostasis. Ferroptosis, a novel form of regulated cell death, is characterized by a production of reactive oxygen species from accumulated iron and lipid peroxidation. However, the relationship between autophagy and ferroptosis at the genetic level remains unclear. Here, we demonstrated that autophagy contributes to ferroptosis by degradation of ferritin in fibroblasts and cancer cells. Knockout or knockdown of Atg5 (autophagy-related 5) and Atg7 limited erastin-induced ferroptosis with decreased intracellular ferrous iron levels, and lipid peroxidation. Remarkably, NCOA4 (nuclear receptor coactivator 4) was a selective cargo receptor for the selective autophagic turnover of ferritin (namely ferritinophagy) in ferroptosis. Consistently, genetic inhibition of NCOA4 inhibited ferritin degradation and suppressed ferroptosis. In contrast, overexpression of NCOA4 increased ferritin degradation and promoted ferroptosis. These findings provide novel insight into the interplay between autophagy and regulated cell death.  相似文献   

4.
The paradigm of cancer stem cells (CSCs) defines the existence of cells exhibiting self-renewal and tumor-seeding capacity. These cells have been associated with tumor relapse and are typically resistant to conventional chemotherapeutic agents. Over the past decade, chemical biology studies have revealed a significant number of small molecules able to alter the proliferation of these cells in various settings. The natural product salinomycin has emerged as the most promising anti-CSC agent. However, an explicit mechanism of action has not yet been characterized, in particular due to the pleiotropic responses salinomycin is known for. In this punctum, we describe our recent discovery that salinomycin and the more potent synthetic derivative we named ironomycin sequester lysosomal iron. We found that these compounds, by blocking iron translocation, induce an iron-depletion response leading to a lysosomal degradation of ferritin followed by an iron-mediated lysosomal production of reactive oxygen species (ROS) and a cell death pathway that resembles ferroptosis. These unprecedented findings identified iron homeostasis and iron-mediated processes as potentially druggable in the context of CSCs.  相似文献   

5.
Both genomic instability and the presence of chronic inflammation are involved in carcinogenesis and tumor progression. These alterations predispose the cancer cells to undergo metabolic reprogramming as well as the epithelial-mesenchymal transition (EMT). These pathways allow cancer cells to avoid apoptosis and stimulate tumor progression. EMT is an important early event in tumor cell invasion, which can be regulated through inflammatory signaling pathways. Cancer cells undergoing EMT are vulnerable to cell death by the process of ferroptosis. Ferroptosis is a form of regulated cell death involving iron-dependent lipid peroxidation, designed to maintain cellular homeostasis. Several reports have linked ferroptosis, inflammation, and cancer. Ferroptosis inhibitors and EMT inducers have been used to understand the anti-inflammatory and anticancer effects in experimental models. A better understanding of the crosstalk between ferroptosis and EMT, and the involvment of inflammatory mediators may accelerate the discovery of therapeutic strategies to eradicate cancer cells and overcome drug-resistance.  相似文献   

6.
Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell-to-cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.  相似文献   

7.
Ferroptosis is a regulated form of cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Ceruloplasmin (CP) is a glycoprotein that plays an essential role in iron homeostasis. However, whether CP regulates ferroptosis has not been reported. Here, we show that CP suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma (HCC) cells. Depletion of CP promoted erastin- and RSL3-induced ferroptotic cell death and resulted in the accumulation of intracellular ferrous iron (Fe2+) and lipid reactive oxygen species (ROS). Moreover, overexpression of CP suppressed erastin- and RSL3-induced ferroptosis in HCC cells. In addition, a novel frameshift mutation (c.1192-1196del, p.leu398serfs) of CP gene newly identified in patients with iron accumulation and neurodegenerative diseases lost its ability to regulate iron homeostasis and thus failed to participate in the regulation of ferroptosis. Collectively, these data suggest that CP plays an indispensable role in ferroptosis by regulating iron metabolism and indicate a potential therapeutic approach for hepatocellular carcinoma.  相似文献   

8.
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer with limited treatment options. Cisplatin (DDP) is used as a mainstay of chemotherapeutic agents in combination with other drugs or radiotherapy for PDAC therapy. However, DDP exhibits severe side-effects that can lead to discontinuation of therapy, and the acquired drug resistance of tumor cells presents serious clinical obstacles. Therefore, it is imperative to develop a more effective and less toxic therapeutic strategy. We and others have previously discovered that dihydroartemisinin (DHA) represents a safe and promising therapeutic agent to preferentially induce cancer cell ferroptosis. In the present study, we find that DHA could intensively strengthen the cytotoxicity of DDP and significantly reduce its effective concentrations both in vitro and in vivo. Combination of DHA and DDP synergistically inhibits the proliferation and induces DNA damage of PDAC cells. Mechanically, the combinative treatment impairs mitochondrial homeostasis, characterized by destroyed mitochondrial morphology, decreased respiratory capacity, reduced ATP production, and accumulated mitochondria-derived ROS. Further studies show that ferroptosis contributes to the cytotoxic effects in PDAC cells under the challenge of DHA and DDP, together with catastrophic accumulation of free iron and unrestricted lipid peroxidation. Moreover, pharmacologic depleting of the free iron reservoir or reconstituted expression of FTH contributes to the tolerance of DHA/DDP-induced ferroptosis, while iron addition accelerates the ferroptotic cell death. In summary, these results provide experimental evidence that DHA acts synergistically with DDP and renders PDAC cells vulnerable to ferroptosis, which may act as a promising therapeutic strategy.Subject terms: Chemotherapy, Preclinical research  相似文献   

9.
10.
Rationale: Colorectal cancer (CRC) is a common malignant tumor of the digestive system. However, the efficacy of surgery and chemotherapy is limited. Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death (RCD) and plays a vital role in tumor suppression. Ferroptosis inducing agents have been studied extensively as a novel promising way to fight against therapy resistant cancers. The aim of this study is to investigate the mechanism of action of tagitinin C (TC), a natural product, as a novel ferroptosis inducer in tumor suppression.Methods: The response of CRC cells to tagitinin C was assessed by cell viability assay, clonogenic assay, transwell migration assay, cell cycle assay and apoptosis assay. Molecular approaches including Western blot, RNA sequencing, quantitative real-time PCR and immunofluorescence were employed as well.Results: Tagitinin C, a sesquiterpene lactone isolated from Tithonia diversifolia, inhibits the growth of colorectal cancer cells including HCT116 cells, and induced an oxidative cellular microenvironment resulting in ferroptosis of HCT116 cells. Tagitinin C-induced ferroptosis was accompanied with the attenuation of glutathione (GSH) levels and increased in lipid peroxidation. Mechanistically, tagitinin C induced endoplasmic reticulum (ER) stress and oxidative stress, thus activating nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). As a downstream gene (effector) of Nrf2, heme oxygenase-1 (HO-1) expression increased significantly with the treatment of tagitinin C. Upregulated HO-1 led to the increase in the labile iron pool, which promoted lipid peroxidation, meanwhile tagitinin C showed synergistic anti-tumor effect together with erastin.Conclusion: In summary, we provided the evidence that tagitinin C induces ferroptosis in colorectal cancer cells and has synergistic effect together with erastin. Mechanistically, tagitinin C induces ferroptosis through ER stress-mediated activation of PERK-Nrf2-HO-1 signaling pathway. Tagitinin C, identified as a novel ferroptosis inducer, may be effective chemosensitizer that can expand the efficacy and range of chemotherapeutic agents.  相似文献   

11.
铁死亡(ferroptosis)是近年提出的一种调节性细胞死亡方式,主要依赖于细胞内铁和脂质活性氧(reactive oxygen species, ROS)积累所引起的细胞死亡。铁死亡的发生与多种生物化学过程密切相关,包括多不饱和脂肪酸、铁和氨基酸代谢,以及谷胱甘肽、磷脂、烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH)和辅酶Q10的生物合成。与正常细胞相比,肿瘤细胞内ROS水平通常较高,因而与ROS有关的铁死亡对肿瘤疾病的影响引人注目。在调节肿瘤细胞如卵巢恶性肿瘤、头颈部癌、弥漫性大B细胞淋巴瘤、肝癌,以及横纹肌肉瘤的生长和增殖中,铁死亡发挥了不可忽视的作用。本文主要阐述了各种生物化学过程对铁死亡的影响,以及铁死亡在肿瘤疾病中的研究进展,为肿瘤疾病的治疗提供新思路。  相似文献   

12.
Ferroptosis is a newly recognized mechanism of regulated cell death. It was reported to be highly associated with immune therapy and chemotherapy. However, its mechanism of regulation in the tumor microenvironment (TME) and influence on oral squamous cell carcinoma (OSCC) therapy are unknown. We identified a ferroptosis-specific gene-expression signature, an FPscore, developed by a principal component analysis (PCA) algorithm to evaluate the ferroptosis regulation patterns of individual tumor. Multi-omics analysis of ferroptosis regulation patterns was conducted. Three distinct ferroptosis regulation subtypes, which linked to outcomes and the clinical relevance of each patient, were established. A high FPscore of patients with OSCC was associated with a favorable prognosis, a ferroptosis-related immune-activation phenotype, potential sensitivities to the chemotherapy and immunotherapy. Importantly, a high FPscore correlated with a low gene copy number burden and high immune checkpoint expressions. We validated the prognostic value of the FPscore using independent immunotherapy and pan-cancer cohorts. Comprehensive evaluation of individual tumors with distinct ferroptosis regulation patterns provides new mechanistic insights, which may be clinically relevant for the application of combination therapies in OSCC.  相似文献   

13.
HCC is a highly lethal tumor, and orthotopic liver transplantation, as one of the radical treatment methods for HCC, has opened-up a new therapeutic approach for the treatment of primary liver cancer. However, tumor recurrence after liver transplantation is the main reason that affects the long-term survival of recipients. At present, the application of ICIs has brought dawn to patients with refractory HCC. However, because of the special immune tolerance state created by long-term oral immunosuppressants in patients with HCC after liver transplantation, the current focus is how to regulate the immune balance of such patients and simultaneously maximize the anti-tumor effect. This article reviews the relationship between liver cancer and immunity, immune tolerance of liver transplantation, immune microenvironment after liver transplantation for HCC, and the application of immunotherapy in the recurrence of liver transplantation for HCC.  相似文献   

14.
肿瘤免疫疗法已成为继手术、化疗和放疗之后的第四种肿瘤治疗方法,是当今肿瘤治疗的新希望。将细菌疫苗应用于肿瘤治疗的研究已经历了多方面的探索。单核细胞增生李斯特氏菌因其能够趋向肿瘤病灶,在肿瘤微环境保护下激起肿瘤浸润细胞的免疫反应,削弱免疫抑制作用而受到研究者的广泛关注。并且,其在乳腺癌、肝癌、黑素瘤、胰腺癌等癌症中都已具有较为广泛的研究。本文就单核细胞增生李斯特氏菌的免疫应答方式、作为肿瘤载体的优势、减毒策略以及在多种肿瘤免疫治疗中的应用进行综述。  相似文献   

15.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

16.
铁死亡是近年来发现的一种程序性细胞死亡新形式,其主要特征是在发生于线粒体内的铁依赖性脂质过氧化物损伤诱导的细胞死亡。铁死亡细胞在形态、蛋白质及基因水平的变化均不同于细胞凋亡、坏死和自噬。2012年,铁死亡概念首次被提出后,铁死亡逐渐成为科学研究的热点。Erastin以及RSL3是铁死亡的诱导剂,谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)是铁死亡的关键调节点,GPX4的表达量减少或活性降低均可诱导铁死亡的发生。胱氨酸-谷氨酸逆向转运蛋白(system Xc-)可将细胞内的谷氨酸排出,同时将细胞外胱氨酸转运入细胞内,促进细胞内谷胱甘肽的合成,维持GPX4酶的活性。新近的研究表明,p62-keap1-Nrf2、P53-SAT1-ALOX15是铁死亡的关键调控通路,p53、BECN1以及BAP1是铁死亡的关键调节因子。Erastin以及RSL3可以选择性杀死RAS突变的肿瘤细胞,且越来越多的研究也证明,诱导肿瘤细胞铁死亡在免疫治疗以及逆转耐药方面均有着重要作用。因此,调控肿瘤细胞铁死亡很可能成为治疗肿瘤的新手段。本文就诱导肿瘤细胞铁死亡的机制及其进展作一综述。  相似文献   

17.
肝细胞肝癌是全球发病率和死亡率最高的恶性肿瘤之一,发病率和死亡率呈逐年上升趋势。我国是肝癌大国,每年肝癌的死亡病例数位居全球第一。免疫治疗是继手术、化疗和放疗之后新兴的癌症治疗手段,其通过解除肿瘤微环境对免疫细胞的抑制作用并激活机体免疫功能,实现控制和杀伤肿瘤细胞。常用的免疫治疗的方法有免疫检查点治疗、过继免疫治疗和肿瘤疫苗治疗等。与传统治疗手段相比,免疫治疗因具有增强机体免疫功能、延缓肿瘤进展、延长患者生存时间等优点,逐渐成为基础和临床研究的热点。文中就免疫治疗在肝癌领域的研究进展作一综述。  相似文献   

18.
肿瘤免疫治疗的成功揭示了宿主免疫在抵抗癌细胞增殖方面的重要作用以及抗肿瘤免疫治疗的可行性.但是具有免疫抑制作用的肿瘤微环境仍然是限制肿瘤免疫治疗进展的重要瓶颈.肿瘤微环境会诱发肿瘤细胞代谢发生重编程,此过程会导致肿瘤细胞与宿主免疫细胞竞争利用营养物质,肿瘤细胞来源的代谢产物或废物可通过多种方式影响免疫细胞的激活及效应功能的发挥,最终达到促使肿瘤细胞存活及增殖的目的.因此,本文就微环境条件下肿瘤细胞代谢重编程及其代谢产物对免疫微环境的影响展开讨论,以期为肿瘤免疫治疗提供理论基础及新的思路.  相似文献   

19.
In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor cells, including immune cells. Considering the extensive interaction between T cells and other immune cells within the tumor microenvironment, ICL expression on immune cells can be as significant as that of ICLs on tumor cells in promoting anti-tumor immune responses. Here, we introduce various regulators known to induce or suppress ICL expression in either tumor cells or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the clinical significance of understanding the mechanisms of ICLs for an optimized immunotherapy for individual cancer patients.  相似文献   

20.
除了依赖于肿瘤细胞自身的恶性增殖以外,肿瘤的发生和发展还依赖于肿瘤细胞与肿瘤间质微环境的相互作用。肿瘤间质中存在的肿瘤相关成纤维细胞(tumor-associatedfibroblasts,TAF)能够诱导免疫抑制,是肿瘤免疫治疗中的一大障碍。在TAF上存在一种成纤维细胞激活蛋白(fibroblast activationprotein,FAP),它在细胞表面发挥作用,是一种膜丝氨酸肽酶,是Ⅱ型丝氨酸蛋白酶家族成员之一,具有二肽肽酶及胶原酶活性,在肿瘤微环境中表达FAP的肿瘤相关成纤维细胞是最早被鉴定的一种肿瘤间质细胞类型。它由肿瘤问质中的成纤维细胞与癌细胞相互作用而活化,是肿瘤微环境中最主要的宿主细胞,具有促进肿瘤细胞生长、侵袭及免疫抑制的作用,而且基因组稳定不易耐药,有望成为肿瘤免疫治疗的新靶标。就靶向TAF和FAP在肿瘤免疫治疗中的研究做一综述,为基于肿瘤间质微环境的免疫治疗提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号