首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
本文研究了D-葡萄糖两步串联发酵中前一步菌株的发酵产酸条件。实验结果表明,在含有D-葡萄糖、适量的玉米浆、碳酸钙和磷酸盐的培养基中,摇瓶培养48小时,一株葡萄糖酸杆菌突变株SCB611可产生2,5-二酮基-D-葡萄糖酸25—30mg/ml,克分子转化率为25%左右;另一株欧文氏菌突变株SCB247可产生2,5-二酮基-D-葡萄糖酸45—50mg/ml,克分子转化率为40%。随发酵时间适当延长,2,5-二酮基-D-葡萄糖酸可逐渐增高。温度28℃,种龄15小时,接种量10%及良好的通气条件,有利于菌株产生2,  相似文献   

2.
棒状杆菌(Corynebactcrium sp.)突变株SCB 3058将2,5-二酮基-D-葡萄糖酸转化为维生素C前体-2-酮基-L-古龙酸。含2,5-二酮基-D-葡萄糖酸的发酵液经表面活性剂SDS处理可直接用作菌株SCB3058的转化底物。D-葡萄糖为最佳碳源,同时作为还原的氢供体。培养基中加入NH.Cl对2-酮基-L-古龙酸的生成有明显的促进作用。转化的最适pH为7.5。摇瓶发酵64小时后,2,5-二酮基-D-葡萄糖酸到2-酮基-L-古龙酸的转化率为50mol%。  相似文献   

3.
研究了在10L发酵罐中D-葡萄糖串联发酵生产维生素C前体——2-酮基-L-古龙酸的发酵工艺条件。第一步发酵采用欧文氏菌(Erwinia sp.)的突变株SCB247,培养36小时,可将D-葡萄糖转化成中间体2,5-二酮基-D-葡萄糖酸,在发酵液中约累积180mg/ml。第二步发酵采用棒状杆菌(Corynebacterium sp.)SCB3058,可将2,5-二酮基-D-葡萄糖酸专一性地还原生成2-酮基-L-古龙酸。在细胞生长进入对数生长期后期时,加入经十二烷基硫酸钠处理的第一  相似文献   

4.
从199株细菌中筛选出产2-酮基-D-葡萄糖酸的高产菌株2株。产物对葡萄糖的克分子转化率达85.93%、87.56%以上。经生物学鉴定,菌株E301为恶臭假单胞菌(Pseudomonas putida),菌株E54为产碱菌属的一个新种,为产酮产碱菌(Alcaligenes ketogenes nov.sp.)。将发酵产物及其转化成的D-异抗坏血酸钠样品经红外吸收光谱比较,结果均与标准品相同。可确定这两株菌的发酵产物确系2-酮基-D-葡萄糖酸钙。  相似文献   

5.
2-酮基-D-葡萄糖酸是重要的抗氧化剂和食品添加剂——D-异抗坏血酸的重要前体。弱氧化葡糖酸杆菌(Gluconobacter suboxydans)具有丰富的周质空间氧化还原酶类,可将葡萄糖氧化为葡萄糖酸再氧化为2-酮基-D-葡萄糖酸。以提高2-酮基-D-葡萄糖酸的产量和减少副产物为目标,采用同源重组染色体修饰策略,将编码甘油脱氢酶的基因gldh置换为编码葡萄糖脱氢酶的基因gdh,将编码山梨醇脱氢酶的基因sdh置换为编码2-酮-D-葡萄糖酸脱氢酶的基因ga-2-dh。经PCR、酶活性显色及发酵产物HPLC检测验证表明:构建的工程菌株gdh和ga-2-dh基因被强化而gldh和sdh被敲除;使用10%的葡萄糖复合培养基,摇瓶发酵72h,工程菌2KGA3发酵液中没有副产物5-酮基-葡萄糖酸,2-酮基-D-葡萄糖酸的含量终浓度达到72.3 g/L,比野生菌株提高42.2g/L,工程菌和野生菌的2-D-KGA质量转化率分别为72.3%和30.1%,工程菌比野生菌提高1.4倍。构建获得的工程菌,不需要外加抗生素,可以保持稳定遗传,对于工业化规模生产具有一定优势,为获得可产业化显示的优势遗传资源打下了基础。  相似文献   

6.
2-酮基-D-葡萄糖酸是合成D-异抗坏血酸(简称异维生素C)的前体。而D-异抗坏血酸及其钠盐是广泛应用于食品工业中的优良抗氧剂。本文通过新种产酮产碱菌使葡萄糖发酵产生2-酮基-D-葡萄糖酸,并对该菌发酵的碳源、氮源、通气量、温度、金属离子等影响作了探讨,通过正交试验确定了产生2-酮基-D-葡萄糖酸最佳种子培养基和发酵培养基。并对该菌的发酵代谢作了初步的观察。  相似文献   

7.
2-酮基-D-葡萄糖酸是合成D-异抗坏血酸(简称异维生素C)的前体。而D-异抗坏血酸及其钠盐是广泛应用于食品工业中的优良抗氧剂。本文通过新种产酮产碱菌使葡萄糖发酵产生2-酮基-D-葡萄糖酸,并对该菌发酵的碳源、氮源、通气量、温度、金属离子等影响作了探讨,通过正交试验确定了产生2-酮基-D-葡萄糖酸最佳种子培养基和发酵培养基。并对该菌的发酵代谢作了初步的观察。  相似文献   

8.
何建明  尹光琳   《微生物学通报》1997,24(6):334-337
产酮产碱菌E54可利用D-葡萄糖发酵产生2-酮基-葡萄糖酸钙,再经甲酯化和化学转化而得到D-异抗坏血酸钢。通过大量摇瓶和罐上试验,进一步优化了培养基组分,改进了发酵条件,并采用批加工艺提高了投糖浓度。菌株在5L罐中发酵周期36h左右,利用D-葡萄糖浓度18~25g/100ml,充分子转化率达90%左在;在147L罐中发酵周期40h左右,利用D-葡萄糖浓度18~25g/100ml,充分子转化率达90%左右。  相似文献   

9.
产酮产碱菌E54可利用D-葡萄糖发酵产生2-酮基-葡萄糖酸钙,再经甲酯化和化学转化而得到D-异抗坏血酸钢。通过大量摇瓶和罐上试验,进一步优化了培养基组分,改进了发酵条件,并采用批加工艺提高了投糖浓度。菌株在5L罐中发酵周期36h左右,利用D-葡萄糖浓度18~25g/100ml,充分子转化率达90%左在;在147L罐中发酵周期40h左右,利用D-葡萄糖浓度18~25g/100ml,充分子转化率达90%左右。  相似文献   

10.
采用紫外照射、化学诱变和原生质融合等方法选育到一株性状更优良的突变株SCB329,并与新筛选的一株芽孢杆菌SCB933搭配组成新的组合菌系。产酸小菌SCB329与其亲本菌株氧化葡萄糖酸杆菌性状相似。伴生大菌SCB933属苏芸金芽孢杆菌(B.thuringiensis)。新组合菌系利用L-山梨糖的发酵液提取后经纸层析,元素分析和红外吸收光谱等项鉴定,其发酵产物确系2-酮基-L-古龙酸,对新组合菌系的生物学特性也进行了研究。  相似文献   

11.
VC二步发酵产酸菌氧化葡萄糖酸杆菌的选育   总被引:2,自引:2,他引:0  
实验通过紫外线两轮诱变的方法诱变选育氧化葡萄糖酸杆菌(Gluconobacter oxydans),以实现提高2-酮基-L-古龙酸(2-KLG)产量的目的,获得1株高产2-KLG的菌株G5。结果证明该突变菌株在pH6.5—6.7的发酵培养基中与蜡质芽孢杆菌(Bcillus cereus)混合发酵,G5的平均糖酸转化率提高了13.49%,酸量达到83.6mg/mL,发酵周期缩短了2—3h。经连续10代转接发酵实验,证明其产酸稳定性较好。结论:氧化葡萄糖酸杆菌(Gluconobacter oxydans)的突变体G5提高了糖酸转化率,缩短了发酵周期。  相似文献   

12.
在成功利用SCB329和SCB110混合培养完成从D-山梨醇转化产生2-酮基-L-古龙酸的基础上。为了消除副产物和获得高的产量,首先对两菌搭配比例,初始pH值、培养基成分等发酵培养条件进行单因子实验,在此基础上采用L9(34)正交实验优化其发酵培养基,其最终的优化培养基的成分为:D-山梨醇9g,玉米浆1.5g,尿素1.5g,磷酸二氢钾0.1g,碳酸钙0.2g。用优化后的培养基发酵,没有检测出副产物2-酮基-D-古龙酸,2-酮基-L-古龙酸产量提高了20%。  相似文献   

13.
在成功利用SCB329和SCB110混合培养完成从D-山梨醇转化产生2-酮基-L古龙酸的基础上,为了消除副产物和获得高的产量,首先对两菌搭配比例,初始pH值,培养基成分等发酵培养条件进行单因子实验,在此基因上采用L9(3^4)正交实验优化其发酵培养基,其最终的优化培养基的成分为:D-山梨醇9g,玉米浆1.5g,尿素1.5g,磷酸二氢钾0.1g,碳酸钙0.2g。用优化后的培养基发酵,没有检测出副产物2-酮基-D-古龙酸,2-酮基-L-古龙酸产量提高了20%。  相似文献   

14.
新组合菌系氧化葡萄糖酸杆菌SCB329-苏芸金芽孢杆菌SCB933能在较长时间内保持高的转化活力且具有极强的抗杂菌污染的特性。在一次投糖分批发酵的基础上,探索在控制溶氧、pH、温度等条件下,分批加入L-山梨糖发酵生产2-酮基-L-古龙酸新工艺。采用新工艺,既充分利用了菌系的优良特性,又避免了高糖浓度可能对菌系造成的不良影响。L-山梨糖最终浓度达到14%(w/v),产酸120—135g/l,转化率90%左右,发酵周期40—65h。  相似文献   

15.
通过在培养基中添加不同量的玉米浆,研究其对氧化葡萄糖酸杆菌(俗称小菌)生产Vc前体2-酮基-L-古龙酸的影响,并研究玉米浆成分中的12种主要氨基酸对小菌产酸的影响。结果表明:每100 mL发酵培养基中添加2.5 g左右过滤除菌玉米浆时,2-酮基-L-古龙酸产量高达26.84 mg/mL,小菌活菌数为不添加玉米浆时小菌单菌发酵下的9.74倍。过量玉米浆抑制小菌产酸。12种氨基酸单独与氧化葡萄糖酸杆菌发酵培养及全部混合后与氧化葡萄糖酸杆菌发酵培养对产酸及菌体生长无影响。  相似文献   

16.
氧化葡萄糖酸杆菌 (Gluconobacteroxydans)SCB3 2 9以D 山梨醇为底物培养时可产生微量 2 酮基 L 古龙酸 ;而葡萄糖酸杆菌 (Gluconobactersp .)SCB1 1 0能将D 山梨醇以较高效率转化为L 山梨糖 ,但不产 2 酮基 L 古龙酸。将两种微生物在以山梨醇为底物的培养基中混合培养 ,其代谢产物经分离提纯后进行熔点测定、元素分析、红外吸收光谱测定等 ,确定其主要的代谢产物是 2 酮基 L 古龙酸。  相似文献   

17.
葡萄糖酸氧化杆菌可将葡萄糖转化为5-酮基-D-葡萄糖酸(5-KGA),而5-KGA是重要食品添加剂L(+)-酒石酸的合成前体。为提高5-KGA产量及其对葡萄糖的转化率,对5-KGA发酵生产的工艺条件进行优化。在摇瓶水平最适的培养基和培养条件下,5-KGA最高产量为19.7 g/L,较优化前提高43.8%。在5 L发酵罐上控制恒定pH值5.5、溶氧浓度15%条件下,5-KGA产量达到46.0 g/L,较摇瓶最高产量提高1.3倍,应用葡萄糖流加工艺,5-KGA最高产量达到75.5 g/L,转化率超过70%,与已见报道的最高水平相比提高了32.0%,为实现微生物发酵生产5-KGA、进而合成L(+)-酒石酸的工业化提供了切实有效的途径。  相似文献   

18.
参照文献上的2,5-二酮基-D-葡萄糖酸(简称2,5-DKG)还原酶II基因序列,合成两个引物序列并在两端加上EcoRI和BamHI两个酶切位点,抽提棒状杆菌SCB3058菌株的染色体为模板进行PCR反应,克隆得到2,5-DKG还原酶II基因,酶切验证与预期的结果相符合。将此片段克隆到pGEM-T载体上保存.将2,5-DKG还原酶II基因用EcoRI和BamHI内切酶切下,连接到pBV220载体上,构建成表达载体。42℃诱导不能得到稳定的蛋白表达条带和酶活力,测序发现基因的3’末端的原PCR引物外少合了一  相似文献   

19.
实验充分利用混合菌系氧化葡萄糖酸杆菌(Gluconobacter oxydans)和蜡状芽孢杆菌(Bacillus cereus)混合发酵的优良特性,通过在发酵过程中间歇流加L-山梨糖的方法,实现了在自动控制温度、pH和溶氧的条件下,高效发酵L-山梨糖生成2-酮基-L-古龙酸(2-KLG)的目的。结果表明:当将L-山梨糖的终浓度调高到14%(w/v)时,2-KLG产量为130mg/mL左右,转化率达90%,发酵周期40—60h之间。结论:发酵过程中间歇流加L-山梨糖可以解除高浓度糖对产酸的抑制作用,提高了糖的转化率,但是发酵周期略有延长。  相似文献   

20.
氧化葡萄糖酸杆菌(Gluconobacter oxydans)SCB329以D-山梨醇为底物培养时可产生微量2-酮基-L-古龙酸;而葡萄糖酸杆菌(Gluconobacter sp.)SCB110能将D-山梨醇以较高效率转化为L-山梨糖,但不产2-酮基-L-古龙酸。将两种微生物在以山梨醇为底物的培养基中混合培养,其代谢产物经分离提纯后进行熔点测定、元素分析、红外吸收光谱测定等,确定其主要的代谢产物是2-酮基-L-古龙酸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号