首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
To alleviate the stress of continuous cropping for cucumber continuous cropping (CCC) system, a beneficial fungus Trichoderma harzianum SQR-T037 (SQR-T037) was isolated and applied to soil to degrade allelochemicals exuded from cucumber plants in a Rhizobox experiment. The following phenolic acids (PAs), classified as allelochemicals, were isolated and identified from cucumber rhizospheres: 4-hydroxybenzoic acid, vanillic acid, ferulic acid, benzoic acid, 3-phenylpropionic acid, and cinnamic acid. Mixed PAs added in potato dextrose broth, each with 0.2 gram per liter, were completely degraded by SQR-T037 after 170 h of incubation. In Rhizobox experiments, inoculation of SQR-T037 in the CCC soil also degraded the PAs exuded from cucumber plant roots. This degradation was 88.8% for 4-hydroxybenzoic acid, 90% for vanillic acid, 95% for benzoic acid, and 100% for ferulic acid, 3-phenylpropionic acid, and cinnamic acid at 45 days after plantation. Simultaneously, a significant (p ≥ 0.05) decrease in the disease index of Fusarium wilt and an increase in dry weights of cucumber plants were obtained in pot experiments by application of SQR-T037. This was mostly attributed to degradation of PAs exuded from cucumber roots in CCC soil by SQR-T037 and alleviation of the allelopathic stress. Application of beneficial microorganisms, such as SQR-T037 that biodegrades allelochemicals, is a highly efficient way to resolve the problems associated with continuous cropping system.  相似文献   

2.
Seven-day-old seedlings of cucumber (Cucumis sativus L.) cv. Wisconsin were treated with 0.1 mM solutions of cinnamic acid (ferulic and p-coumaric acids) and benzoic acid (p-hydroxybenzoic and vanillic acids) derivatives as stressors. The content of free and glucosylated soluble phenols and the activity of phenylalanine ammonia-lyase (E.C.4.3.1.5), phenol-β-glucosyltransferase (E.C.2.4.1.35.), and β-glucosidase (E.C.3.2.1.21.) in seedling roots as well as their length and fresh weight were examined. Changes in glucosylated phenolic content and phenol-β-glucosyltranspherase activity were observed under the influence of all phenolics applied. Treatment with ferulic and p-coumaric acids stimulated the increase of phenylalanine ammonia-lyase and β-glucosidase activity and slightly inhibited cucumber root growth.  相似文献   

3.
Seven-day-old seedlings of cucumber (Cucumis sativus L.) cv. Wisconsin were treated with 0.01, 0.1 and 0.5 mM solutions of derivatives of cinnamic acid (ferulic and p-coumaric acids) and benzoic acid (p-hydroxybenzoic and vanillic acids) as stress factors. In cucumber roots phenolics (free and glucosylated), phenol β-glucosyltransferase (E.C. 2.4.1.35) activity as well as membrane permeability were examined. The most intensive glucosylation took place in the first hour of stress duration in roots treated with 0.01 mM ferulic and p-coumaric acids and with 0.01 and 0.1 mM p-hydroxybenzoic and vanillic acids. At these concentrations a high phenol β-glucosyltransferase activity was found. The deterioration of capacity for phenolic glucosylation as well as the decrease of the phenol β-glucosyltransferase was observed at the higher concentrations. It was associated with increased membrane permeability.  相似文献   

4.
Summary Laboratory prescreening ofRhizobium trifolii for acid tolerance, based upon the ability of rhizobia to grow in acid media (pH 4.2) containing Al (15 M), was successful for the selection of strains capable of survival in acid soil.Both sterile and non-sterile soils of varying acidity were inoculated with several strains ofR. trifolii.Acid tolerant strains generally had significantly higher populations at every sample period than an acid sensitive strain. Amelioration of soil acidity by liming improved persistence of all strains. Soil sterilization by autoclaving adversely affected survival of all strains at each soil acidity level.Paper Number 8766 of the Journal Series, North Carolina Agricultural Research Service, Raleigh, NC 27650, USA.  相似文献   

5.
Summary Laboratory experiments were conducted to determine the effects of crop residues, without and withPenicillium urticae Bainer inoculation, on growth of wheat seedlings in soil. Fifty grams of Sharpsburg silty clay loam soil, containing 1% by weight of incorporated alfalfa, sorghum and corn stover residue, were placed in petri dishes, autoclaved, wetted to 40% moisture, and incubated at 24°C. for periods of 2, 3, and 4 weeks. One-half of the petri dishes were inoculated withP. urticae. Germination and seedling-shoot measurements were taken after 7 days of growth.The results of this study showed that (1) inoculation of soil generally reduced seedling height regardless of the residue treatment; (2) inoculation of soil containing corn and sorghum residues resulted in greater tissue production but reduced height of seedlings as compared to non-inoculated soils; and (3) in the absence of residues, the inoculated control soils were a better growth medium for wheat seedlings than were the non-inoculated control soils. In addition, alfalfa residues, especially in the presence ofP. urticae, were strongly inhibitory to the wheat seedlings, causing curling and reduced wheat-seedling root growth.Joint contribution from University of Nebraska and Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, and Nebraska Agricultural Experiment Station, Lincoln, Nebraska, cooperating. Published with the approval of the Director as Paper No. 1242, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

6.
Summary Alfalfa seeds, inoculated with an antibiotic-resistantRhizobium meliloti strain, were planted in three replicated field plots at Clayton, N.C. Core samples were taken three times in the next year at 0, 10, and 20 cm from the edge of each plot. Soil subsamples were taken from within each core sample at 0, 6, 12, and 18 cm depths. The numbers of the inoculum Rhizobium strain in each soil subsample were determined by inoculation of alfalfa plants with diluted soil samples. In general the distribution of rhizobia showed some movement outward and downward in the soil. Lower counts were obtained at the surface during summer. The Rhizobium persistence pattern in the soil differed in the three plots which is consistent with the variability in Rhizobium numbers often observed in established alfalfa stands. Cooperative investigation of the United States Department of Agriculture, Science and Education Administration, Agricultural Research and the North Carolina Agricultural Research Service, Raleigh, North Carolina. Paper No. 6818 of the Journal Series of the North Carolina Agricultural Research Service at Raleigh.  相似文献   

7.
Adding 2–30 M jasmonic acid (JA) to photomixotrophic suspension cultures of soybean increased the level of several soluble polypeptides isolated by SDS-PAGE. The major polypeptides affected by JA treatment were at Mr 31,200 (p31) and Mr 39,000. Spraying leaves of soybean seedlings with 10–50 M JA also increased the level of several soluble polypeptides including p31. The use of Con A affinity chromatography demonstrated that p31 was a glycoprotein and that JA increased the level of three other glycoproteins at Mr 22,000, 33,000, and 52,000. The JA treatment did not alter the growth or morphology of the seedlings. JA at 2–30 M did not significantly inhibit the growth of the cultured cells and did not significantly alter the chlorophyll concentration. However, JA at concentrations above 30 M inhibited growth and chlorophyll levels in cultured cells. The suspension cultured cells could provide a reliable bioassay for jasmonic acid.This paper represents cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601. Paper No. 10997 of the journal series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or the North Carolina Agricultural Research Service and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

8.
黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响   总被引:49,自引:3,他引:46  
伴随连作年限的增加,日光温室黄瓜连作土壤中酚酸类物质(对羟基苯甲酸、阿魏酸、苯甲酸)明显积累,连作5~9年的土壤酚酸类物质含量显著高于连作1~3年的土壤.伴随外源酚酸类物质处理浓度的增加,黄瓜根区土壤中细菌、放线菌和微生物总量以及N生理群均呈先升后降趋势,在80 μg·g-1处理浓度下细菌、放线菌数量最多,处理浓度在120μg·g-1以下土壤真菌数量(包括尖孢镰刀菌、疫霉)急剧增长;多酚氧化酶、过氧化氢酶、蔗糖酶、脲酶和蛋白酶活性也同样呈先升后降趋势,但其峰值对应的浓度不同.  相似文献   

9.
High performance liquid chromatography analysis of different parts of Sclerotium rolfsii-infected and healthy seedlings of chickpea (Cicer arietinum) was carried out to examine the status of phenolic compounds. Three major peaks that appeared consistently were identified as gallic, vanillic and ferulic acids. Gallic acid concentrations were increased in the leaves and stems of infected plants compared to healthy ones. Vanillic acid detected in stems and leaves of healthy seedlings was not detected in infected seedlings. There was a significant increase of ferulic acid in those stem portions located above the infected collar region compared to minimal amounts in the roots of healthy seedlings. In vitro studies of ferulic acid showed significant antifungal activity against S. rolfsii. Complete inhibition of mycelial growth was observed with 1000 g of ferulic acid/ml. Lower concentrations (250, 500 and 750 g/ml) were also inhibitory and colony growth was compact in comparison with the fluffy growth of normal mycelium. Higher amounts of phenolics were found in the stems and leaves of S. rolfsii-infected seedlings in comparison to the healthy ones. A role for ferulic acid in preventing infections by S. rolfsii in the stems and leaves of chickpea plants above the infection zone is therefore feasible.  相似文献   

10.
Effect of substrate-dependent microbial ethylene production on plant growth   总被引:1,自引:0,他引:1  
Various compounds have been identified as precursors/substrates for the synthesis of ethylene (C2H4) in soil. This study was designed to compare the efficiency of four substrates, namely L-methionine (L-MET), 2-keto-4-methylthiobutyric acid (KMBA), 1-aminocyclopropane-1-carboxylic acid (ACC), and calcium carbide (CaC2), for ethylene biosynthesis in a sandy clay loam soil by gas chromatography. The classic “triple” response in etiolated pea seedling was employed as a bioassay to demonstrate the effect of substrate-dependent microbial production of ethylene on plant growth. Results revealed that an amendment with L-MET, KMBA, ACC (up to 0.10 g/kg soil) and CaC2 (0.20 g/kg soil) significantly stimulated ethylene biosynthesis in soil. Overall, ACC proved to be the most effective substrate for ethylene production (1434 nmol/kg soil), followed by KMBA, L-MET, and CaC2 in descending order. Results further revealed that ethylene accumulation in soil from these substrates caused a classic “triple” response in etiolated pea seedlings with different degrees of efficacy. A more obvious classic “triple” response was observed at 0.15, 0.10, and 0.20 g/kg soil of L-MET, KMBA/ACC, and CaC2, respectively. Similarly, direct exposure of etiolated pea seedlings to commercial ethylene gas also modified the growth pattern in the same way. A significant direct correlation (r = 0.86 to 0.97) between substrate-derived C2H4 and the classic triple response in etiolated pea seedlings was observed. This study demonstrated that the presence of substrate(s) in soil may lead to increased ethylene concentration in the air of the soil, which may affect plant growth in a desired direction. Published in Russian in Mikrobiologiya, 2006, Vol. 75, No. 2, pp. 277–283. The text was submitted by the authors in English.  相似文献   

11.
Summary Fall field patulin applications (500 µg/g of soil) to Cheyenne winter wheat seedlings at growth stages 0, 1, and 2, decreased germination, plant growth, winter survival, and tillering. Decreased tillering decreased the number of heads and grain yield. Spring patulin application of 250 and 500 µg/g of soil to wheat at growth stages 6, 7, 8, 9, and 10 decreased yields by decreasing the number of heads, kernels per head, and kernel weight. With fall patulin applications, yields were decreased more when patulin was applied near seeding. Spring patulin applications to wheat during sensitive heading stages decreased yield the most.Stages of wheat growth especially susceptible to patulin are the germination, stem-elongation, and flowering, which occur during the fall and spring when soil Penicillium urticae Bainier numbers are maximun and patulin has been extracted from the soil.Contribution from the Soil, Water, and Animal Waste Management Research Unit, North Central Region, Agricultural Research Service, U.S. Department of Agriculture, in cooperation with the Nebraska Agricultural Experiment Station, Lincoln. Published as Paper No. 4071, Journal Series, Nebraska Agricultural Experiment Station.Microbiologist, USDA, A.R.S. University of Nebraska, Lincoln; Soil Scientist, USDA, A.R.S. Fort Collins, Colorado; and Microbiologist, USDA, A.R.S. University of Nebraska, Lincoln, respectively.  相似文献   

12.
Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is found in both plants and soils, and some evidence suggests its involvement in biochemical interactions between plants (allelopathy) and other organisms living in the soil. Knowledge of the processes affecting the concentrations of such potential allelochemicals in soil is essential if we are to understand their roles in the soil environment. It was the intent of this study to address the effects that soil physicochemical and biological processes have on the recovery of exogenously applied ferulic acid from tropical forest soils. Soil extractants used in this study are thought to recover potentially bioavailable concentrations of applied ferulic acid. Water and sodium acetate extractions of soil (immediately and after one and two days) were employed in the recovery of ferulic acid (added at a rate of 5.15 mmoles kg–1) from steam-sterilized and non-sterilized forest soil materials. Sterilization of soil was used to isolate physicochemical effects from microbial effects on ferulic acid. Results indicate some sterilization treatment effects on the immediate recovery of ferulic acid. Physicochemical and biological processes of soils decreased the recovery of ferulic acid. The immediate recovery of ferulic acid from non-sterile soils is inversely related to the % organic carbon present in the soils. Certain soils have the ability to trap ferulic acid molecules for subsequent release into the soil-solution phase. Furthermore, results suggest that microbial degradation of ferulic acid may only occur in the solution (bulk) phase; ferulic acid molecules thought to be bound to soil surfaces appear to be protected from degradation.Use of trade names in this publication does not imply endorsement by the Organization for Tropical Studies, North Carolina State University or the Savannah River Ecology Laboratory of the products named nor criticism of similar ones not mentioned.  相似文献   

13.
采用PCR-DGGE技术,研究了NaCl(0、292.5、585 mg·kg-1土)胁迫下,不同浓度苯丙烯酸(0、25、50、100、200 mg·kg-1土)对黄瓜根际细菌DNA分子水平多态性的影响.结果表明:在黄瓜幼苗的不同时期,低浓度苯丙烯酸(50 mg·kg-1土)处理使DGGE图谱中的条带数和条带灰度与对照(CK,0 mg·kg-1土)相近,多样性指数、均匀度指数和丰富度指数最高;高浓度苯丙烯酸(100、200 mg·kg-1土)处理使土壤DGGE图谱中的条带数减少,条带灰度变暗,多样性指数、均匀度指数和丰富度指数较低.表明NaCl胁迫下,低浓度苯丙烯酸缓解而高浓度苯丙烯酸加重了盐分对土壤微生物的胁迫.对目的条带的克隆测序结果表明,受影响的主要细菌类群多数为不可培养细菌及α-、γ-和β-变形菌门,有少部分属于厚壁菌门、酸杆菌门和放线菌门.  相似文献   

14.
Adding jasmonic acid (JA) to autotrophic, photomixotrophic, or heterotrophic suspension cultures of soybean specifically increased the level of the Mr 30,000 subunit of soybean vegetative storage protein (VSP-30) and a polypeptide at Mr 18,000 that interacted with antibody raised against VSP. Using photomixotrophic cells, the increase was observed at concentrations as low as 10 nM JA and the increase was evident within 2 h following treatment. Below 10 M, JA did not inhibit growth of the cells but did cause browning at higher concentrations. Other plant growth regulators, including abscisic acid (ABA), gibberellic acid, and benzyl adenine, did not alter the level of VSP-30 either in the presence or absence of JA. Methyl jasmonate (JA-Me), 3-oxo-2-butyl-cyclopentane-1-acetate, and 3-oxo-2-pentyl-cyclopentane-1-acetate also increased VSP-30 but at higher concentrations than JA. Altering the level of reduced nitrogen or sucrose in the medium did not alter VSP-30 levels in the cells, but at higher sucrose concentrations, sensitivity to JA was reduced. The dramatic increase in VSP-30 elicited by JA appears to be a specific response to the phytohormone.Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643. Paper No. 12474 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture or the North Carolina Agricultural Research Service and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

15.
Summary Capsular polysaccharides were isolated fromRhizobium japonicum (61A76NS) and conjugated to a fluorescent dye to determine if the specificity in theRhizobium japonicum-soybean symbiosis is expressed by a component (lectin) located on soybean roots which binds to the sugars of the bacterial capsules.The conjugated Fraction A capsular polysaccharides ofR. japonicum bound only to the root hair tips of soybean seedlings. The polysaccharide would not bind specifically to the roots of clover or alfalfa seedlings. Rhodamine conjugated polysaccharides ofR. japonicum could be inhibited from binding to soybean root hairs by the addition of N-acetylgalactosamine or galactose, effective hapten inhibitors of this type of binding. This is the first report of hapten-reversible binding of an isolated rhizobial component to soybean root hairs, the differentiated epidermal cells which are subsequently infected by this nitrogen-fixing symbiont.Paper number6046 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

16.
Towards a high-yield bioconversion of ferulic acid to vanillin   总被引:13,自引:2,他引:11  
Natural vanillin is of high interest in the flavor market. Microbial routes to vanillin have so far not been economical as the medium concentrations achieved have been well below 1 g l−1. We have now screened microbial isolates from nature and known strains for their ability to convert eugenol or ferulic acid into vanillin. Ferulic acid, in contrast to the rather toxic eugenol, was found to be an excellent precursor for the conversion to vanillin, as doses of several g l−1 could be fed. One of the isolated microbes, later identified as Pseudomonas putida, very efficiently converted ferulic acid to vanillic acid. As vanillin was oxidized faster than ferulic acid, accumulation of vanillin as an intermediate was not observed. A completely different metabolic flux was observed with Streptomyces setonii. During the metabolism of ferulic acid, this strain accumulated vanillic acid only to a level of around 200 mg l−1 and then started to accumulate vanillin as the principal metabolic overflow product. In shake-flask experiments, vanillin concentrations of up to 6.4 g l−1 were achieved with a molar yield of 68%. This high level now forms the basis for an economical microbial production of vanillin that can be used for flavoring purposes. Received: 15 October 1998 / Received revision: 13 January 1999 / Accepted: 18 January 1999  相似文献   

17.
The effects of exogenous spermidine (Spd) application to hypoxic nutrient solution on the contents of endogenous polyamines (PAs) and respiratory metabolism in the roots of cucumber (Cucumis sativus L.) seedlings were investigated. Cucumber seedlings were grown hydroponically in control and hypoxic nutrient solutions with and without addition of Spd at a concentration of 0.05 mM. The activities of key enzymes involved in the tricarboxylic acid cycle (TCAC), such as succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), were significantly inhibited under root-zone hypoxia with dissolved oxygen (DO) at 1 mg/l. In contrast, the activities of enzymes involved in the process of fermentation, such as pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and alanine aminotransferase (AlaAT), were significantly increased. Thus, aerobic respiration was inhibited and fermentation was enhanced in the roots of cucumber seedlings as a result of decreasing ATP content to inhibit the dry weight of seedlings under hypoxic stress. Moreover, the contents of free, soluble conjugated, and insoluble bound putrescine (Put), Spd, and spermine (Spm) in the roots of cucumber seedlings were significantly increased under hypoxia stress. Interestingly, application of Spd to hypoxic roots markedly suppressed the accumulation of free Put and, in contrast, promoted an increase in free Spd and Spm, as well as soluble conjugated and insoluble bound Put, Spd, and Spm contents. From these data, we deduced that exogenous Spd promotes the conversion of free Put into free Spd and Spm, and soluble conjugated and insoluble bound PAs under hypoxia stress. Furthermore, the activities of LDH, PDC, and ADH were suppressed and, in contrast, the activities of SDH and IDH were enhanced by application of exogenous Spd to hypoxic roots. As a result, aerobic respiration was enhanced but fermentation metabolism was inhibited in the roots of cucumber seedlings, leading to an increase in ATP content to alleviate the inhibited dry weight of seedlings due to hypoxia stress. These results suggest that application of Spd to hypoxic nutrient solution promoted conversion of free Put into free Spd and Spm as well as soluble conjugated and insoluble bound PAs, further enhanced IDH and SDH activities, and inhibited ethanol fermentation and lactate fermentation, resulting in increased ATP content and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

18.
Summary The allelopathic effect of alfalfa (Medicago media Pers.) and red clover (Trifolium pratense L.) root saponins on winter wheat seedling growth and the fate of these chemicals in soil environments were studied. Seed germination, seedling and test fungus growth were suppressed by water and by alcohol extracts of alfalfa roots, and by crude saponins of alfalfa roots, indicating that medicagenic acid glycosides are the inhibitor. Powdered alfalfa roots inhibited wheat seedling growth when added to sand. At concentrations as low as 0.25% (w/w) the root system was completely destroyed whereas seedling shoots suffered little damage. Red clover roots caused some wheat growth inhibition when incorporated to sand, but their effect was much lower than in the alfalfa root treatment. Soil textures had a significant influence on the inhibitory effect of alfalfa roots. The inhibition of seedling growth was more pronounced on light than on heavy soils. This was attribted to the higher sorption of inhibitors by heavy soils. Incubation of alfalfa roots mixed into loose sand, coarse sand, loamy sand and clay loam for a period of 0–8 days resulted in decreased toxicity to bothT. viride and wheat seedlings. This decrease occurred more quickly in heavier soils than in loose sand, due to the hydrolysis of glycosides by soil microorganisms. Soil microbes were capable of detoxifying medicagenic acid glycosides by partial hydrolysis of sugar chain to aglycone. These findings illustrate the importance of medicagenic acid glycosides as an inhibitor of wheat seedling growth, and of their fate in different soil environments.  相似文献   

19.
Extensive empirical research has been published on the fermentation of vegetables, but little predictive modeling of the process is available. The objectives of this study were to assess the effects of key variables involved in cucumber fermentation and to develop models for predicting the growth of Lactobacillus plantarum in pure and mixed culture fermentations. The growth medium for the studies was cucumber juice. The effects of various concentrations of lactic, acetic, and hydochloric acids and sodium chloride on growth at 30° C were determined in batch culture. Limiting conditions for growth were pH 3.37 (lower limit), 69 mm undissociated lactic acid, 150 mm undissociated acetic acid, or 11.8% NaCl. Acetic acid was stimulatory to growth at low concentrations (up to 40 mm) but inhibitory at higher concentrations. Lactic acid was more inhibitory than acetic acid, whether total or undissociated concentrations were used as the basis of comparison. A predictive equation for specific growth rate was developed, tested, and shown to predict growth of L. plantarum in batch processes reasonably well.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture or North Carolina Agricultural Research Service, nor does it imply approval to the exclusion of other products that may be suitable Correspondence to: H. P. Fleming  相似文献   

20.
We conducted pot experiments to investigate the effects of brassinolide on 1-year-old Xanthoceras sorbifolia B. seedlings. In the experiment, roots were soaked in 0–0.4 mg/l brassinolide. After the seedlings were established, the soil water content in the pots was regulated to simulate drought conditions and various physiological parameters were measured. The results showed that the treatment with 0.2 mg/l brassinolide decreased the malondialdehyde content and electrolyte leakage of seedlings growing under moderate or severe water stress when compared with untreated seedlings. Leaf water content, relative water content, soluble sugar content, soluble protein content, free proline content, ascorbic acid content, glutathione content and superoxide dismutase, peroxidase, catalase and ascorbate peroxidase activities were all greater in water-stressed seedlings in the 0.2 mg/l brassinolide treatment as compared to the control. The results indicate that the application of brassinolide can ameliorate the effects of water stress and enhance drought resistance of Xanthoceras sorbifolia seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号