首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was previously shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, codes for two functionally exclusive protein isoforms through alternative initiation at two consecutive ACG codons and an in-frame downstream AUG. We reported here the cloning and characterization of a homologous gene from Candida albicans. Functional assays show that this gene can substitute for both the cytoplasmic and mitochondrial functions of ALA1 in S. cerevisiae and codes for two distinct protein isoforms through alternative initiation from two in-frame AUG triplets 8-codons apart. Unexpectedly, although the short form acts exclusively in cytoplasm, the longer form provides function in both compartments. Similar observations are made in fractionation assays. Thus, the alanyl-tRNA synthetase gene of C. albicans has evolved an unusual pattern of translation initiation and protein partitioning and codes for protein isoforms that can aminoacylate isoaccepting tRNAs from a different species and from across cellular compartments.  相似文献   

2.
It was recently shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, uses two successive ACG triplets as the translation initiators for its mitochondrial form. Evidence presented here argues that the second ACG triplet not only acts as a remedial initiation site for scanning ribosomes that skip the first ACG, but also enhances the activity of the preceding initiator by providing a preferable "A" at its relative position +4. Therefore, ALA1 constructs with redundant ACG initiators exhibit stronger complementing activity and express a higher level of protein than do those with a single ACG initiator. A similar scenario is seen when a single or redundant ACG triplets are placed in the positions of the first and second AUG initiators of VAS1, which serve as the start sites of the mitochondrial and cytoplasmic forms of valyl-tRNA synthetase, respectively. Cumulatively, the results suggest that this feature of redundancy of non-AUG initiators in a single mRNA per se may represent a novel paradigm for improving the efficiency of a poor or otherwise nonproductive initiation event.  相似文献   

3.
4.
Translational regulation of the JunD messenger RNA   总被引:2,自引:0,他引:2  
  相似文献   

5.
The quantitative levels of initiation of protein synthesis at codons other than AUG were determined with a CYC7-lacZ fused gene in the yeast Saccharomyces cerevisiae. AUG was the only codon which efficiently initiated translation, although some non-AUG codons allowed initiation at very low efficiency, below 1% of the normal level. Since translation initiates at codons other than AUG in at least two wild-type genes from eucaryotes, other factors presumably play a role in enhancing the activity of non-AUG codons.  相似文献   

6.
7.
The use of several translation initiation codons in a single mRNA, by expressing several proteins from a single gene, contributes to the generation of protein diversity. A small, yet growing, number of mammalian mRNAs initiate translation from a non-AUG codon, in addition to initiating at a downstream in-frame AUG codon. Translation initiation on such mRNAs results in the synthesis of proteins harbouring different amino terminal domains potentially conferring on these isoforms distinct functions. Use of non-AUG codons appears to be governed by several features, including the sequence context and the secondary structure surrounding the codon. Selection of the downstream initiation codon can occur by leaky scanning of the 43S ribosomal subunit, internal entry of ribosome or ribosomal shunting. The biological significance of non-AUG alternative initiation is demonstrated by the different subcellular localisations and/or distinct biological functions of the isoforms translated from the single mRNA as illustrated by the two main angiogenic factor genes encoding the fibroblast growth factor 2 (FGF2) and the vascular endothelial growth factor (VEGF). Consequently, the regulation of alternative initiation of translation might have a crucial role for the biological function of the gene product.  相似文献   

8.
9.
X Chen  K L Kindle    D B Stern 《The Plant cell》1995,7(8):1295-1305
To study translation initiation in Chlamydomonas chloroplasts, we mutated the initiation codon AUG to AUU, ACG, ACC, ACU, and UUC in the chloroplast petA gene, which encodes cytochrome f of the cytochrome b6/f complex. Cytochrome f accumulated to detectable levels in all mutant strains except the one with a UUC codon, but only the mutant with an AUU codon grew well at 24 degrees C under conditions that require photosynthesis. Because no cytochrome f was detectable in the UUC mutant and because each mutant that accumulated cytochrome f did so at a different level, we concluded that any residual translation probably initiates at the mutant codon. As a further demonstration that alternative initiation sites are not used in vivo, we introduced in-frame UAA stop codons immediately downstream or upstream or in place of the initiation codon. Stop codons at or downstream of the initiation codon prevented accumulation of cytochrome f, whereas the one immediately upstream of the initiation codon had no effect on the accumulation of cytochrome f. These results suggest that an AUG codon is not required to specify the site of translation initiation in chloroplasts but that the efficiency of translation initiation depends on the identity of the initiation codon.  相似文献   

10.
A reassessment of the translation initiation codon in vertebrates   总被引:13,自引:0,他引:13  
  相似文献   

11.
The MADS box organ identity gene AGAMOUS (AG) controls several steps during Arabidopsis thaliana flower development. AG cDNA contains an open reading frame that lacks an ATG triplet to function as the translation initiation codon, and the actual amino terminus of the AG protein remains uncharacterized. We have considered the possibility that AG translation can be initiated at a non-AUG codon. Two possible non-AUG initiation codons, CUG and ACG, are present in the 5' region of AG mRNA preceding the highly conserved MADS box sequence. We prepared a series of AG genomic constructs in which these codons are mutated and assayed their activity in phenotypic rescue experiments by introducing them as transgenes into ag mutant plants. Alteration of the CTG codon to render it unsuitable for acting as a translation initiation site does not affect complementation of the ag-3 mutation in transgenic plants. However, a similar mutation of the downstream ACG codon prevents the rescue of the ag-3 mutant phenotype. Conversely, if an ATG is introduced immediately 5' to the disrupted ACG codon, the resulting construct fully complements the ag-3 mutation. The AG protein synthesized in vitro by initiating translation at the ACG position is active in DNA binding and is of the same size as the AG protein detected from floral tissues, whereas AG polypeptides with additional amino-terminal residues do not appear to bind DNA. These results indicate that translation of AG is initiated exclusively at an ACG codon and prove that non-AUG triplets may be efficiently used as the sole translation initiation site in some plant cellular mRNAs.  相似文献   

12.
13.
R Boeck  D Kolakofsky 《The EMBO journal》1994,13(15):3608-3617
Only rarely do GUG (or CUG or ACG) codons which precede the 5'-proximal AUG function as initiators of protein synthesis, even when they are within a context that contains a purine at position -3 and a G at +4. For example, the upstream GUG of the human parainfluenza virus type 1 (hPIV1) P gene is initiated by ribosomes at high frequency, whereas a seemingly similar GUG codon in the hPIV3 P gene is not used at all. We have examined the reasons for this by expressing chimeric hPIV3/hPIV1 mRNAs, both in vivo and in vitro. A major determinant for efficient GUG utilization was located downstream of the GUG, but this did not appear to be involved in the formation of secondary structure. Rather, the sequence immediately downstream was found to be critical; this determinant was mapped to positions +5 and +6. GUG could be used efficiently for ribosomal initiation when the second codon was GAU but not when it was GUA. Similar results were found when other non-AUG start sites, the Sendai virus P gene ACG and the c-myc-1 CUG, were examined. These results suggest that positions +5 and +6 are important determinants for initiation at non-AUG start sites, and that they are recognized independently of the overall secondary structure of the mRNA.  相似文献   

14.
Previous studies have shown that translation of mrna for yeast glycyl-tRNA synthetase is alternatively initiated from UUG and a downstream AUG initiation codon. Evidence presented here shows that unlike an AUG initiation codon, efficiency of this non-AUG initiation codon is significantly affected by its sequence context, in particular the nucleotides at positions -3 to -1 relative to the initiation codon. A/A/R (R represents A Or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequence -3 to -1 from AAA to CGC reduced translation initiation from the UUG codon up to 32-fold and resulted in loss of mitochondrial respiration. although an AUG initiation codon is, in general, unresponsive to context changes in yeast, an AAA (-3 to -1) to CGC mutation still reduced its initiating activity up to 8-fold under similar conditions. these results suggest that sequence context is more important for translation initiation in yeast than previously appreciated.  相似文献   

15.
The efficiency of translation initiation at codons differing at one or two nucleotides from AUG was tested as initiation codons for the phosphinotricin-acetyltransferase gene in T-DNA plant transformation in Arabidopsis thaliana. With the exception of UUA codon that differs from AUG at two nucleotides and does not permit any detectable activity, all the other codons (AUC, GUG, ACG, and CUG) present a phosphinotrycin acetyltransferase activity that varies between 5 and 10% of the AUG activity. This low activity is sufficient to confer glufosinate resistance to some of the plants. These results indicate that, in plants as is the case in animals, non-AUG initiating codons may be used for translation initiation, namely when a low expression rate is needed.  相似文献   

16.
17.
Previous studies have shown that in Saccharomyces cerevisiae the mitochondrial and cytoplasmic forms of alanyl-tRNA synthetase are encoded by a single nuclear gene, ALA1, through alternative use of in-frame successive ACG triplets and a downstream AUG triplet. Here we show that despite the obvious participation of the non-AUG-initiated leader peptide in mitochondrial localization, the leader peptide per se cannot target a cytoplasmic passenger protein into mitochondria under normal conditions. Functional mapping further shows that an efficient targeting signal is composed of the leader peptide and an 18-residue sequence downstream of Met1. Consistent to this observation, overexpression of the cytoplasmic form enables it to overcome the compartmental barrier and function in the mitochondria as well, but deletion of as few as eight amino acid residues from its amino-terminus eliminates such a potential. Thus, the sequence upstream of the first in-frame AUG initiator not only carries an unusual initiation site, but also contributes to a novel pattern of protein expression and localization.  相似文献   

18.
In eukaryotes, the cytoplasmic and mitochondrial forms of a given aminoacyl-tRNA synthetase (aaRS) are typically encoded by two orthologous nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. We herein report a novel scenario of aaRS evolution in yeast. While all other yeast species studied possess a single nuclear gene encoding both forms of alanyl-tRNA synthetase (AlaRS), Vanderwaltozyma polyspora, a yeast species descended from the same whole-genome duplication event as Saccharomyces cerevisiae, contains two distinct nuclear AlaRS genes, one specifying the cytoplasmic form and the other its mitochondrial counterpart. The protein sequences of these two isoforms are very similar to each other. The isoforms are actively expressed in vivo and are exclusively localized in their respective cellular compartments. Despite the presence of a promising AUG initiator candidate, the gene encoding the mitochondrial form is actually initiated from upstream non-AUG codons. A phylogenetic analysis further revealed that all yeast AlaRS genes, including those in V. polyspora, are of mitochondrial origin. These findings underscore the possibility that contemporary AlaRS genes in V. polyspora arose relatively recently from duplication of a dual-functional predecessor of mitochondrial origin.  相似文献   

19.
20.
Human T-cell lymphotropic virus type I (HTLV-I) double-spliced mRNA exhibits two GUG and two CUG codons upstream to, and in frame with, the sequences encoding Rex and Tax regulatory proteins, respectively. To verify whether these GUG and CUG codons could be used as additional initiation codons of translation, two chimeric constructs were built for directing the synthesis of either Rex–CAT or Tax–CAT fusion proteins. In both cases, the CAT reporter sequence was inserted after the Tax AUG codon and in frame with either the Rex or Tax AUG codon. Under transient expression of these constructs, other proteins of higher molecular mass were synthesized in addition to the expected Rex–CAT and Tax–CAT proteins. The potential non-AUG initiation codons were exchanged for either an AUG codon or a non-initiation codon. This allowed us to demonstrate that the two GUG codons in frame with the Rex coding sequence, and only the second CUG in frame with the Tax coding sequence, were used as additional initiation codons. In HTLV-I infected cells, two Rex and one Tax additional proteins were detected that exhibited molecular mass compatible with the use of the two GUG and the second CUG as additional initiation codons of translation. Comparison of the HTLV-I proviral DNA sequence with that of other HTLV-related retroviruses revealed a striking conservation of the three non-AUG initiation codons, strongly suggesting their use for the synthesis of additional Rex and Tax proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号