首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylene losses from the gas phase of various container-seal systems were studied to develop acceptable methods for containing ethylene during experiments. Ethylene at an initial amount of 104 μI I-1 was stored in glass vials at near atmospheric pressure for 20 h at 25–27°C and at 35% relative humidity external to the vials. Crimped serum vials sealed with saturated (NH4)2SO4 solution, neoprene rubber septa, nitrile rubber (Hycar) septa, butyl rubber septa, and brown translucent silicone rubber septa lost ethylene at the rate of 1.8, 10.2, 16.2, 16.5, and 40.2 nl m-2s-1, respectively, over the 20-h period. Screw-capped reaction vials sealed with white silicone rubber septa lost ethylene at the rate of 30.2 nl m-2s-1. The (NH4)2SO4 solution was utilized as a seal by inverting a vial so that the salt solution covered the internal surface of the vial septum. Saturated (NH4)2SO4 solution is an effective seal. Silicone rubber should be avoided as a seal in systems for containing ethylene. Ethylene production values in the literature may be underestimates where silicone rubber seals have been used.  相似文献   

2.
Experiments were carried out to compare the retting of moist flax preserved with sulphur dioxide with that of green dried flax, using whole straw samples. When retted in water at either a constant 20°C or 28°C dried flax was fully retted after 15 and 10 days respectively whereas the sulphur dioxide treated flax (20 g sulphur dioxide kg“1 flax DM) had undergone almost no retting after 20 days at 20dC or 10 days at 28°C. Pre-soaking the treated flax for 24 h in water and changing the acidified water, raised the pH of the retting liquor to a more normal value but did not significantly increase the rate of retting. Addition of the pectinase enzyme preparation ‘Flaxzyme’ to retting liquor at the rate of either 1.5 g kg-1 or 3.0 g kg-1 water, and at a constant temperature of 20°C, substantially increased the rate of retting of both sulphur dioxide treated and dried flax. Optimum degree of retting was achieved at 24 h with the treated flax and at 97 h with the dried flax. Pre-rinsing of the sulphur dioxide treated straw only served to reduce the rate of retting. It was concluded that natural water retting of sulphur dioxide treated flax is retarded by the presence of acidic residues of sulphur dioxide, while enzyme retting is enhanced by these. In further smaller scale experiments using bundles of cut flax straw Flaxzyme was added at concentrations ranging from 0–8.0 ml litre 1 to containers containing flax in water at ratios from 1:10 to 1: 600 flax:water and the producion of galacturonic acid was used as an indicator of retting progress. Retting took place more rapidly at higher flax to water ratios for a given enzyme concentration. This effect was attributed to the lower pH of higher flax to water ratios which created pH conditions closer to the pH optimum for the retting enzymes. When enzyme retting was compared at a range of buffered pH's the optimum was pH 4.0. At a buffered pH of 4.0 and a temperature of 19°C, retting of sulphur dioxide treated moist flax (flax to water ratio of 1:10) was achieved with Flaxzyme concentrations as low as 0.5 ml litre”‘,much lower than the previously reported minimum of 3.0 ml litre’.  相似文献   

3.
Seed of flax (Linum usitatissimum L.) grown on calcareous and neutral soils sometimes accumulates relatively high concentrations of Cd. The influence of a post-flowering application of NH4NO3 (115 mg N kg-1), CdSO4 (1 mg Cd kg-1), FeEDDHA (2 mg Fe kg-1), NaH2PO4 (120 mg P kg-1) and ZnSO4 (8 mg Zn kg-1) on seed accumulation of Cd, Fe, N, Mn, P and Zn by flax grown on a Calciaquoll was studied in two experiments under greenhouse conditions. Seed yields were increased by the N and Zn treatments, and the N×Zn interaction was positive. Zinc deficiency delayed flowering and boll formation by up to 20 days and reduced seed size. In the absence of added Cd, seed accumulated up to 0.33 mg Cd kg-1. This Cd accumulation was reduced by approximately 50 and 17% by added Zn and Fe, respectively, but was little affected by P fertilizer and post-flowering N stress. In the presence of added Cd, seed Cd exceeded 3.3 mg Cd kg-1, and the antagonistic effects of Fe and Zn on seed Cd were absent. Seed N, P, Fe and Zn concentrations were increased on average by 10, 45, 31 and 97% by the N, P, Fe and Zn fertilizer treatments, respectively. FeEDDHA reduced seed Mn concentration by approximately 58%. However, seed Mn concentration was much less than that found in vegetative tissue at flowering. Soil-applied Zn may reduce seed Cd concentration in flax under field conditions, and may increase marketability of flax for food use.  相似文献   

4.
Nitrogen from poultry manure (PM) and ammoniacal fertilizers undergoes rapid nitrification upon addition to soils, making it highly susceptible to leaching and thus creating a potential for groundwater contamination by nitrate-N. Any management technique that could delay nitrification would be desirable. A laboratory incubation study was conducted to determine the effect of thiosulfate, a known nitrification inhibitor, on nitrification in a loamy sand soil amended with five N sources, including two poultry manures and three N fertilizers [(NH4)2SO4, NH4NO3, CO(NH2)2]. The manures or fertilizers were added to a soil-sand mixture alone or in combination with Na2S2O at a rate of 100 mg N kg-1 for the inorganic N sources and 147 mg N kg-1 and 122 mg N kg-1 for PM-1 and PM-2 respectively. All treatments were incubated for 12 weeks and analyzed periodically for NO3-N and NH4-N.Thiosulfate was most effective with NH4NO3, maintaining 100% inhibition of nitrification throughout the 12 week study, and with (NH4)2SO4 (89% inhibition at 12 weeks). Thiosulfate also inhibited nitrification from urea and poultry manure, but the inhibitory effect diminished later in the incubation. Urea had 81% inhibition of nitrification after eight weeks, decreasing to 26% by week 12, while the manures averaged 89% inhibition after four weeks and 20% at week 12. Net mineralization of organic N from PM was also reduced by the use of thiosulfate, particularly for PM-1 where the percentage of organic N mineralized decreased from 42% after four weeks incubation to 3% at week 12. Therefore, while thiosulfate can reduce nitrification from manures, and thus the potential for nitrate leaching, the timing of manure application will influence the effect of thiosulfate on the availability of manure N for plant uptake or leaching.  相似文献   

5.
Ryegrass, harvested before ear emergence, was ensiled in triplicate in laboratory silos with and without pre-ensiling treatments. These were: 4.7 M sulphuric acid (39 and 79 g kg?1 DM); formalin (28 and 58 g kg?1 DM); ‘Add-F’ (22.5 M formic acid; 36 and 71 g kg?1 DM); formalin (28 and 58 g kg?1 DM); ‘Farmline’, a commercial additive containing acids and formalin (31 g kg?1 DM); heat (30 and 60°C for 1 h); and Lactobacillus plantarum inoculum + glucose (4.6 g kg?1 DM). The ensilage period was 120 days. Samples of each silage were incubated, in artificial fibre bags, in the rumens of four Hereford-cross steers fitted with permanent rumen cannulae. Total nitrogen (TN) disappearance was measured after incubation periods of 1, 2, 4, 7, 12 and 24 h.Hydrochloric acid and the heating pre-treatments had no significant effect (P > 0.05) on the pH, water-soluble carbohydrates and fermentation acid values compared with those of the control. Fermentation acid production was suppressed to an increasing extent by formalin (28 g kg?1 DM), sulphuric acid (79 g kg?1 DM), formic acid (36 g kg?1 DM), formalin (58 g kg?1 DM) and formic acid (71 g kg?1 DM).The application of L. plantarum + glucose increased fermentation acids from 90.3 g kg?1 DM in the control to 227 g kg?1 DM, owing to a 10-fold increase in lactic acid content from 21.7 to 202 g kg?1 DM.All treatments, with the exception of 30°C heating, produced silages with significantly (P < 0.001) more total nitrogen as protein than the control. This ranged from 334 g kg?1 TN (60°C heating) to 748 g kg?1 TN (formalin; 58 g kg?1 DM).All treatments significantly (P < 0.05) reduced TN loss, compared with the control silage values, after a 7-h incubation period in the rumen. After 24 h, however, TN disappearance from the treated silages was not significantly different from that of the control with the exception of the two silages treated with formalin alone. With these silages, the proportion of TN disappearing was 55.0 and 40.0% for the low and high application rates, respectively, compared with a value of 74.0% for the control.  相似文献   

6.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

7.
Ryegrass, harvested at the pre-ear emergence stage of growth, was ensiled in laboratory silos, either fresh (175 g dry matter kg?1) or wilted to five DM levels ranging from 216–432 g DM kg?1, with and without additive treatment. The additives used were “Sylade” containing sulphuric acid (15%) and formaldehyde (23%) applied at 4.6 l t?1 and an “ADD-F” (85% formic acid)formalin mixture (7:3 by volume) applied at a similar rate (4.8 l t?1). An additional treatment included application of the mixture at a constant rate related to the DM content of the ensiled crop (25 l t?1 DM).In the untreated silages, the water-soluble carbohydrates (WSC) varied, respectively (over the DM range 175–432), from 0–32 g kg?1 DM compared with 197-6 g kg?1 DM for the “Sylade” treated silages and 256-50 g kg?1 DM for the formic acid/formalin silages treated at an additive rate of 4.8 l t?1. Corresponding ranges of protein N for the control and treatments (expressed as g kg?1 total N) were 302–447, 624-502 and 620-505, respectively. When the formic acid/formalin additive was applied at a constant level related to the DM content of the crop, although the WSC content decreased with increasing DM (247-158 g kg?1 DM), the protein N content (612 g kg?1 total N) remained constant.Grass from the same field was ensiled fresh, treated with “ADD-F” at the rate of 3.4 l t?1 fresh grass, ADD-Fformalin at the rate of 4.8 l t?1 fresh grass and “Sylade” at the rate of 4.6 l t?1 fresh grass. The silages were given to Suffolk-cross wether lambs in digestibility and intake trials. Digestibility coefficients of DM and energy of the silage treated with “Sylade” were significantly lower (P < 0.05) than those of the other three silages. The DM intakes of all the silages were high, ranging from 27.7 g kg?1 live weight for the “Sylade” silage to 30.7 g kg?1 live weight for the silage treated with ADD-Fformalin. Live weight gains ranged from 200 g/day for the control silage to 267 g/day for the ADD-Fformalin silage.  相似文献   

8.
Fish silage was manufactured by the addition of formic acid (85% solution) to whole mackerel at a rate of 35 g kg−1 [wet weight (ww)]. During 112 days of storage, the peroxide value of the silage declined from 164.3 meq O2 kg−1 oil on Day 1 to 55.0 meq O2 kg−1 oil by Day 42 and thereafter remained stable; microbial activity persisted at 10 colonies g−1 silage ww. Four diets of similar crude protein, digestible energy and mineral concentrations were formulated with 0, 50, 100 or 150 g fish silage kg−1 diet dry matter (DM). The diets were given to 72 Landrace × (Landrace × Large White) pigs (boars, gilts and castrated males) from 25 kg to slaughter at 55 kg.Animals on fish silage diets grew faster than those given no fish silage owing to an improved food conversion ratio (FCR); 100 g fish silage kg−1 diet DM effected best performance (daily liveweight gain, 725 g; FCR, 1.96). Carcass measurements did not vary between dietary treatments. Soft, yellow fat was observed in carcasses from pigs given 150 g silage kg−1 diet DM. Growth rates were similar between sexes; boars and gilts had less backfat than castrated males.  相似文献   

9.
Leaching of nitrate (NO3 ) below the root zone and gaseous losses of nitrogen (N) such as ammonia (NH3) volatilization, are major mechanisms of N loss from agricultural soils. New techniques to minimize such losses are needed to maximize N uptake efficiency and minimize production costs and the risk of potential N contamination of ground and surface waters. The effects of cellulose (C), clinoptilolite zeolite (CZ), or a combination of both (C+CZ) on NH3 volatilization and N transformation in a calcareous Riviera fine sand (loamy, siliceous, hyperthermic, Arenic Glossaqualf) from a citrus grove were investigated in a laboratory incubation study. Ammonia volatilization from NH4NO3 (AN), (NH4)2SO4(AS), and urea (U) applied at 200 mg N kg–1 soil decreased by 2.5-, 2.1- and 0.9-fold, respectively, with cellulose application at 15 g kg–1 and by 4.4-, 2.9- and 3.0-fold, respectively, with CZ application at 15 g kg–1 as compared with that from the respective sources without the amendments. Application of cellulose plus CZ (each at 15 g kg–1) was the most effective in decreasing NH3 volatilization. Application of cellulose increased the microbial biomass, which was responsible for immobilization of N, and thus decreased volatilization loss of NH3–N. The effect of CZ, on the other hand, may be due to increased retention of NH4 in the ion-exchange sites. The positive effect of interaction between cellulose and CZ amendment on microbial biomass was probably due to improved nutrient retention and availability to microorganisms in the soil. Thus, the amendments provide favorable conditions for microbial growth. These results indicate that soil amendment of CZ or CZ plus organic materials such as cellulose has great potential in reducing fertilizer N loss in sandy soils.  相似文献   

10.
In vitro zygotic and somatic embryogenesis protocols rely on nutrient and hormone levels from media to satisfy the physiological and developmental requirements of embryony. To better understand these requirements for cotton, we quantified levels of major and minor elements, carbohydrates, NH4 +, free amino acids and six hormones in whole cotton ovules (with fibers removed), nucelli (ovules with integuments removed), or ovule fluid (extracted from the endosperm region). Samples were collected from field-grown cotton at 1–18 days-past-anthesis (DPA) during each of three growing seasons. Replication across 2 years was obtained for carbohydrates, NH4 +, free amino acids and hormones from nucellus samples. The year effect was large primarily for hormones only. The most abundant minerals across tissue types and years were K, P, Mg and S. Potassium was the most abundant at 260, 600 and 1,660 mmol kg−1 dry mass (DM) in nucelli, whole ovules and ovule fluid, respectively. Magnesium, Ca, Zn and Mn levels were 2–8-fold higher in ovule fluid compared to whole ovules or nucelli. In the free amino acid plus NH4 + category, NH4 +, alanine, serine, glycine, asparagine (plus aspartic acid), glutamine (plus glutamic acid), leucine, threonine and arginine predominated in nucelli and ovule fluid, and levels tended to be higher in the older samples across years and tissue types. Fructose and glucose levels also increased with age with very high levels being found in late DPA ovule fluid. Arabinose, inositol and melibiose were also prominent sugars. Indole-3-acetic acid levels were similar between nucelli and ovule fluid and ranged from 10 to 80 μmol kg−1 DM. An abscisic acid spike, from 15 to 400 μmol kg−1 DM, occurred in nucelli and whole ovules from 2 to 8 DPA. Thereafter, abscisic acid levels remained between 5 and 10 μmol kg−1 DM. Zeatin and zeatin riboside were the most abundant cytokinins, and levels of these hormones fluctuated between 1 and 4 μmol kg−1 DM in both nucelli and ovule fluid.  相似文献   

11.
Dehydrated lucerne of low (L: 0.53), normal (N: 0.55) and high (H: 0.73) in vivo dry matter (DM) digestibility were treated with ammonia or urea to study the effects on in situ and pepsin-cellulase DM digestibilities, water solubility and nitrogen content (Experiments 1, 2, 4) and on cell wall composition and degradability (Experiment 3). (1) N lucerne was treated with 30 g NH3 kg−1 DM for 1 to 12 weeks at 30°C and 2 to 6 days at 80°C; (2) L, N and H lucerne were treated with increasing ammonia levels: 15 to 100 g kg−1 DM for 3 weeks at 30°C and 4 days at 80°C; (3) L, N and H lucerne were treated with 60 g NH3 kg−1 DM for 3 weeks at 30°C and 4 days at 80°C; (4) L, N and H lucerne were treated with 60 g urea kg−1 DM without addition of urease for 3 and 6 weeks at 30°C. All treatments were carried out at 40% humidity.In situ and pepsin-cellulase DM digestibilities increased significantly (P < 0.05) with the duration of treatment (up to 3 weeks at 30°C and 4 days at 80°C) and with the level of ammonia (P < 0.01) (up to 30 g kg−1 DM). The greatest improvements (similar at both temperatures) were for L, N and H of 7.3, 7.2 and 3.9 points for in situ and of 10.6, 11.3 and 6.3 points for cellulase digestibilities, respectively. Water solubility also increased with duration of treatment and level of ammonia (P < 0.01) and was greater at 80°C than at 30°C. Urea treatment significantly improved (P < 0.01) digestibilities and water solubility but the doubling of treatment duration had no influence. The degree of ureolysis was only 50 to 60%. Ammonia and urea treatments considerably increased (P < 0.01) nitrogen content.Treatment with 60 g NH3 kg−1 DM induced a decrease in ethanol insoluble residue content, which was significant (P < 0.01 for L and N, P < 0.05 for H) at 80°C but not at 30°C, and was greater for L and N than for H (about 12 and 5 points, respectively). This decrease was essentially due to solubilisation of hemicelluloses (− 15%) and uronic acids (− 26%). Thus, at 30°C, the chemical solubility of the cell wall was lower than at 80°C for the same total increase in microbial degradation. This result indicates that other phenomena are involved, such as an increase in cell wall porosity and consequently improved accessibility of cell wall polysaccharides to glycolytic enzymes.  相似文献   

12.
The dynamics of inorganic N are important in soil, and this applies particularly to the saline–alkaline soils of the former lake Texcoco in Mexico with high pH and salinity where a forestation program was started in the 1970s. In soils of lake Texcoco, in Mexico, more than 50% of applied N could not be accounted for one day after application of 200 mg kg–1 soil along with glucose amendment. It was not clear whether this was due to abiotic or biotic processes, the form of inorganic N applied or the result of applying an easily decomposable substrate. We investigated this by adding glucose and 200 mg kg–1 soil as (NH4)2SO4-N or KNO3-N to sterilized and unsterilized soil. The changes in inorganic and ninhydrin N, microbial biomass C and production of CO2 were then monitored. Between the time of applying N and extraction with 0.5 M K2SO4, i.e., after ca 2 h, approximately 110 mg NH4 +-N kg–1 dry soil could not be accounted for in the unsterilized and sterilized soil and that remained so for the entire incubation in the sterilized soil. After 1 day this increased to 140 mg NH4 +-N kg–1 dry soil in the unsterilized control and 170 mg NH4 +-N kg–1 dry soil in C amended soil. Volatilization of NH3 accounted for 56 mg NH4 +-N kg–1 so the rest appeared to be adsorbed on the soil matrix. The NH3 volatilization and NH4 + fixed in the soil matrix remained constant over time and no oxidation to NO2 or NO3 had occurred, so unaccounted N in unsterilized soil was probably incorporated into the microbial biomass in excess of what was required for metabolic activity. The unaccounted N was ca 70 mg NO3 –N in nitrate amended soil after 3 days and 138 NO3 –N when glucose was additionally added. Losses through abiotic processes were absent as inferred from changes in sterilized soil and the aerobic incubation inhibited possible losses through denitrification. It was inferred that NO3 that could not be accounted for was taken up by micro-organisms in excess of what was required for metabolic activity.  相似文献   

13.
A calorimetric experiment of 4 × 4 Latin square design was undertaken to study the effect of sugar-beet pulp (SBP), maize starch, sucrose and xylose on energy metabolism in sheep. The four diets comprised a diet (A) of dried grass, soya-bean meal and SBP (450, 50 and 500 g kg−1 on dry matter (DM) basis) and corresponding diets in which 400 g kg−1 of SBP was replaced by maize starch (B), sucrose (C) or xylose (D); all diets were offered at a level of 600 g DM day−1. After the Latin square was completed, energy value of the basal diet of dried grass and soya-bean meal (900 and 100 g kg−1 DM; 600 g day−1) was determined in the same four sheep.Treatment differences in organic matter, gross energy, nitrogen (N) and neutral detergent fibre (NDF) digestibility were non-significant. Differences in N retention were not significant.Digestible energy (DE) contents (MJ kg−1 DM) were 13.27, 13.22, 13.21 and 13.21 MJ kg−1 for diets A, B, C and D, respectively. Energy loss in methane was higher (P < 0.05) for Diet A than for other diets. Metabolizable energy (ME) contents for the diets A-D were 11.25, 11.22, 11.32 and 11.40 MJ kg−1 DM, respectively. Metabolizability (q) of the diets averaged 0.642 and was not significantly affected by the diet given. There was a trend for heat production to be higher in sheep given the sucrose-containing diet (C) than in those given other diets (6.34 versus 6.04 MJ day−1) and as a result, energy retention was lower (0.38 versus 0.64 MJ day−1), but the difference did not reach statistical difference. Efficiencies of utilization of ME for maintenance and fattening (kmf) averaged 0.67 and were in good agreement with those predicted from equations of the Agricultural Research Council (1980) excepting the lower kmf (0.63) for Diet C.The mean ME content of SBP calculated by difference was 13.05 MJ kg−1 DM and the corresponding values for mixtures of SBP + starch, SBP + sucrose and SBP + xylose (600 and 400 g kg−1 DM) were 12.98, 13.16 and 13.36 MJ kg−1 DM, respectively.  相似文献   

14.
The emission of reduced volatile sulfur compounds from twigs of Norway spruce (Picea abies (L.) Karst.) was measured in the field by cryosampling and gaschromatographic analysis. Trees were growing in the Erzgebirge (E-Germany) at Oberbärenburg and at the Kahleberg and at a third stand in NW-Bavaria (S-Germany). Emission rates were also measured for Scotch pine (Pinus sylvestris L.) and Blue spruce (Picea pungens Engelm.) at the Kahleberg. Twigs still attached to the trees were enclosed in a flow-through gas exchange cuvette. H2S was detected as the predominant reduced sulfur compound emitted from the twigs. The mean H2S emission rate from twigs of Norway spruce varied between 0.04 pmol kg-1 dw s-1 at Würzburg and 6.21 pmol kg-1 dw s-1 at the Kahleberg. Comparing different species at the Kahleberg, the mean H2S emission rate was almost the same from twigs of Norway spruce (6.2 pmol kg-1 dw s-1) and Blue Spruce trees (5.9 pmol kg-1 dw s-1) but it was approximately 18 times higher for Scotch pine (110 pmol kg-1 dw s-1). The percentage of SO2-exclusion via H2S-emission of the tree species investigated at the Kahleberg is calculated on the basis of data on SO2 fluxes. It is very small for Norway spruce and Blue spruce. However, for Scotch pine, H2S emission contributes about 10% to the detoxification of SO2.  相似文献   

15.
Equilibrium data of aqueous two-phase systems composed of polyethylene glycol (4000 g mol−1 or 6000 g mol−1) and Li2SO4, (NH4)2SO4 or Na2SO4 at pH 6.5 and 25 °C were obtained. The efficiency of these in the partition of amylases derived from Aspergillus niger was determined. The experimental data of binodal curves and tie lines were used to estimate the group interaction parameters using the UNIFAC model. Additionally, the influence of phases on the activity of the enzymes was investigated. The results indicate that the polymer molar mass did not influence the biphasic region size. However, the cations under study presented differences in induction to phase formation. It was verified that the systems formed with the Na+ presented a larger biphasic region. The increase in the molar mass of the polymer caused the increase in the exclusion volume from 3970.732 g mol−1 to 5700.873 g mol−1. The transfer Gibbs free energy of enzymes presented values between −1296.30 kJ mol−1 and −2867.70 kJ mol−1, that is, the process was spontaneous for all systems studied. The systems formed by (NH4)2SO4 and PEG 4000 g mol−1 presented the best Ke result (3.421) and theoretical recovery of 80.35 %.  相似文献   

16.
Jarosite [(Na+, K+, NH4 +, H3O+)Fe3(SO4)2(OH)6] is an efficient scavenger for trace metals in Fe- and SO4 2--rich acidic water. During the biosynthesis of jarosite promoted by Acidithiobacillus ferrooxidans, the continuous supply of high oxygen levels is a common practice that results in high costs. To evaluate the function of oxygen in jarosite production by A. ferrooxidans, three groups of batch experiments with different oxygen supply levels (i.e., loading volume percentages of FeSO4 solution of 20%, 40%, and 70% v/v in the flasks), as well as three groups of sealed flask experiments with different limiting oxygen supply conditions (i.e., the solutions were not sealed at the initial stage of the ferrous oxidation reaction by paraffin but were rather sealed at the end of the ferrous oxidation reaction at 48 h), were tested. The formed Fe-precipitates were characterized via X-ray powder diffraction and scanning electron microscope-energy dispersive spectral analysis. The results showed that the biosynthesis of jarosite by A. ferrooxidans LX5 could be achieved at a wide range of solution loading volume percentages. The rate and efficiency of the jarosite biosynthesis were poorly correlated with the concentration of dissolved oxygen in the reaction solution. Similar jarosite precipitates, expressed as KFe3 (SO4) 2(OH)6 with Fe/S molar ratios between 1.61 and 1.68, were uniformly formed in unsealed and 48 h sealed flasks. These experimental results suggested that the supply of O2 was only essential in the period of the oxidation of ferrous iron to ferric but was not required in the period of ferric precipitation.  相似文献   

17.
The experiment was set up to examine the influence of different nitrogen forms: (NH4)2SO4, Ca(NO3)2 or NH4NO3 on growth response, root induced pH changes in the rhizosphere, root-borne acid phosphatase activity in strawberry plants cv. Senga Sengana. The plants grown on sandy mineral soil were fertilized with 3 forms of nitrogen, in concentrations of 46 mg N·kg−1 soil. The plants were grown in rhizoboxes with removable plexiglass lids. To ensure the root growth along the plexiglass lids, the rhizoboxes were placed at an angle of about 50° with the lid on the lower side. In case of ammonium supply, the nitrification inhibitor DIDIN was added (10 mg·kg−1 of moist soil) to prevent conversion of ammonium into nitrate. The growth response (roots and shoots) of strawberry plants were determined after 11 weeks of treatment with different N forms. The best development of the root system and shoots (root and shoot dry weight and root length) was obtained, when ammonium nitrate was supplied. It is suggested therefore, that NH4NO3 stimulates vegetative growth of strawberry plants cv. Senga Sengana. However, there were no statistical differences in a leaf and flower number of the plants grown under different forms of N-fertilization. Determination of rhizosphere pH, and acid phosphatase activity were executed using non-destructive techniques, which enabled weekly measurement of chemical changes in the rhizosphere. The results revealed that the form of nitrogen supplied had a predominant effect on chemical changes in the rhizosphere of strawberry plants. The highest pH values (average pH 6.8) were measured in the rhizosphere of individual plants supplied with Ca(NO3)2. Whereas the lowest pH values (average pH 5.8) were detected in the presence of (NH4)2SO4. The curve of rhizosphere pH measured along individual roots of the plants treated with Ca(NO3)2 represents the highest pH values whereas the curve of rhizosphere pH under (NH4)2SO4 treatment had the lowest pH values. The highest activity of acid phosphatase were observed in the rhizosphere of strawberry plants grown in the presence of (NH4)2SO4, at pH 5.8.  相似文献   

18.
Shoots of poplar (Populus euramericana L. cv. Flevo) were exposed to filtered air, SO2, NH3 or a mixture of SO2 and NH3 for 7 weeks in fumigation chambers. After this exposure gas exchange measurements were carried out using a leaf chamber. As compared to leaves exposed to filtered air, leaves pretreated with 112 μg m?3 SO2 showed a small reduction in maximum CO2 assimilation rate (Pmax) and stomatal conductance (gs). They also showed a slightly higher quantum yield and dark respiration. In addition, the fluorescence measurements indicated that the Calvin cycle of the leaves pretreated with 112 μg m?3 SO2 was more rapidly activated after transition from dark to light. An exposure to 64 μg m?3 NH3 had a positive effect on Pmax, stomatal conductance and NH3 uptake of the leaves. This positive effect was counteracted by an SO2 concentration of 45 μg m?3. The exposure treatments appeared to have no effect on the relationship between net CO2-assimilation and gs. Also, no injury of the leaf cuticle or of epidermal cells was observed. Resistance analysis showed that NH3 transfer into the leaf can be estimated from data on the boundary layer and stomatal resistance for H2O transfer and NH3 concentration at the leaf surface, irrespective of whether the leaves are exposed for a short or long time to NH3 or to a mixture of NH3 and SO2. In contrast SO2 uptake into the leaves was only partly correlated to the stomatal resistance. The results suggest a large additional uptake of this gas by the leaves. The possibility of a difference in path length between SO2 and H2O molecules is proposed.  相似文献   

19.
The effects of enhanced (NH4 2SO4deposition on soil solution cation and anion concentrations and annualionic fluxes were followed using a standardised experimental protocolin six European coniferous forests with contrasting soil types, pollutioninputs and climate. Native soil cores containing a ceramic suction cupwere installed in the field, roofed and watered every two weeks withlocal throughfall or local throughfall with added(NH4)2SO4 at 75 kgNH4 +-N ha-1 a-1. Livingroot systems were established in half of the lysimeters.Untreated throughfall NH4 +-N deposition at thesites ranged from 3.7 to 29 kg ha-1 a-1Soil leachates were collected at two weekly intervalsover 12 months and analysed for volume, andconcentrations of major anions and cations. Increasesin soil solution NO3 - concentrations inresponse to N additions were observed after 4–9months at three sites, whilst one sandy soil with highC:N ratio failed to nitrify under any of thetreatments. Changes in NO3 - concentrationsin soil solution controlled soil solution cationconcentrations in the five nitrifying soils, withAl3+ being the dominant cation in the more acidsoils with low base saturation. The acidification responses ofthe soils to the (NH4 2SO4additions were primarily related to the ability of thesoils to nitrify the added NH4 +. pH and soiltexture seemed important in controllingNH4 + leaching in response to the treatments,with two less acidic, clay/clay loam sites showingalmost total retention of added NH4 +, whilstnearly 75% of the added N was leached asNH4 + at the acid sandy soils. The presenceof living roots significantly reduced soil solutionNO3 - and associated cation concentrations attwo of the six sites. The very different responses of the sixsoils to increased (NH4)2SO4deposition emphasise that the establishment of N critical loadsfor forest soils need to allow for differences in N storagecapacity and nitrification potential.  相似文献   

20.
Experiments were conducted in greenhouse, growth chamber, and laboratory conditions to determine the effect of ammonium sulfate [(NH4)2SO4] on the phytotoxicity, foliar uptake, and translocation of imazamethabenz on wild oat. Rates of (NH4)2SO4 up to 5% (w/v) applied with a greenhouse sprayer did not affect the phytotoxicity of the herbicide when the mix was applied at the one- to two-leaf stage. However, inclusion of 1 and 2% (NH4)2SO4 increased the phytotoxicity of the herbicide when the mix was sprayed at the two- to three-leaf, or the three- to four-leaf stage. At 10%, (NH4)2SO4 decreased the phytotoxicity of the sublethal dosage of the herbicide. When the herbicide was applied as individual drops to the growth chamber-grown plants, inclusion of (NH4)2SO4 at 1% did not affect phytotoxicity as measured by shoot growth. The presence of (NH4)2SO4 did not affect the amount of imazamethabenz retained by wild oat foliage, but it decreased [14C]imazamethabenz absorption, slightly antagonized acropetal translocation, and increased the basipetal translocation of [14C]imazamethabenz. It was concluded that application methods greatly modify the effect of (NH4)2SO4 on imazamethabenz phytotoxicity. Herbicide absorption and translocation as determined by one method do not necessarily represent the absorption and translocation patterns when different application methods are used. Absorption and translocation were not the factors that were responsible for the observed effect of (NH4)2SO4 on the herbicide phytotoxicity.Abbreviations SC suspension concentrate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号