首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Importance of seed Zn content for wheat growth on Zn-deficient soil   总被引:10,自引:2,他引:8  
Seed nutrient reserves may be important for an early establishment of crops on low-fertility soils. This glasshouse pot study evaluated effects of seed Zn content on vegetative growth of two wheat (Triticum aestivum L.) genotypes differing in Zn efficiency. Low-Zn (around 250 ng Zn per seed) and high-Zn seed (around 700 ng Zn per seed on average) of Excalibur (Zn efficient) and Gatcher (Zn inefficient) wheats were sown in a Zn-deficient siliceous sand fertilised with 0, 0.05, 0.2, 0.8 or 3.2 mg Zn kg-1 soil. After 3 weeks, plants derived from the high-Zn seed had better root and shoot growth; the cv. Excalibur accumulated more shoot dry matter than the cv. Gatcher. After 6 weeks, greater root and shoot growth of plants grown from the high-Zn seed compared to those from the low-Zn seed was obvious only at nil Zn fertilisation. A fertilisation rate of 0.2 mg Zn kg-1 soil was required for achieving 90% of the maximum yield for plants grown from the high-Zn seed compared to 0.8 mg Zn kg-1 soil for plants derived from the low Zn seed. The critical Zn level in youngest expanded leaves for 90% maximum yield was 16 mg Zn kg-1 dry matter for both genotypes. Zn-efficient Excalibur had greater net Zn uptake rates compared to Zn-inefficient Gatcher after 3 weeks but they were not different at the 6-week harvest. Zinc-deficient plants had greater net uptake rates of Cu, Mn, B, P, and K but a reduced uptake rate of Fe. It is concluded that higher seed Zn content acted similar to a starter-fertiliser effect by improving vegetative growth and dissipating differences in Zn efficiency of wheat genotypes.  相似文献   

2.
Summary Flax growing on a calcareous soil in the greenhouse developed Mn toxicity symptoms. The toxicity was eliminated by application of 2 ppm FeEDDHA-Fe. FeEDDHA had major effects on distribution of Mn, Zn, Fe and P among selected plant parts. Application of the chelate reduced Mn concentration in older leaves, the tissue most susceptible to Mn toxicity, associated stem tissue, plant tops, and roots from 2295 to 133 ppm, 62 to 7 ppm, 550 to 34 ppm, and 42 to 34 ppm, respectively. Analysis of older leaves is recommended for diagnosing Mn toxicity in flax.FeEDDHA reduced Zn concentration in plant tops and this was chiefly reflected in greatly reduced leaf concentrations, especially in older leaves. FeEDDHA increased plant Fe concentration and the effect was greatest in root and older leaf tissues. The overall effect of FeEDDHA on P concentration was small but large increases occurred in younger leaf tissue due to application of the chelate. Relative distributions of K, Na, Ca, and Mg among plant parts were only slightly affected by FeEDDHA.  相似文献   

3.
Abstract

Distribution of possible chemical forms of Al, Si, Sn, Pb, Zn, Fe, Hg, Cd and Cu in marine sediments of Cape Town harbour was investigated using a modified Tessier’s sequential extraction procedure and ICP-MS and ICP-AES for heavy metals determination. The mean fractions for all metals at all locations were: 1.5–7196 mg kg-1 for Si, 7.79–7266 mg kg-1 for Al, 161-639 mg kg-1 for Cu, 19–41978 mg kg-1 for Fe, 2.83–5864 mg kg-1 for Zn, 1.45–13.26 mg kg-1for Cd, 9.87–223 mg kg-1 for Sn, 11.98-979 mg kg-1 for Pb and 0.13–5.93 mg kg-1 for Hg. Si, Al and Zn were mostly associated with Fe–Mn oxides, whereas Sn and Hg were mainly bound to residual and organic matter. Pb existed mainly in the residual and iron/manganese oxide phases while Cd was evenly distributed in all the five phases. The loading plots of heavy metals bound to the various chemical forms, as well as Pearson correlation coefficients, enabled the determination binding relationship. Pb, Sn and Hg exhibited similar binding behaviour which indicated an anthropogenic point source from wastes from the ship maintenance workshop, and the presence of Sn in the organic phase can be identified with the use of anti-fouling paints at the harbour, whereas Al, Fe, Si, Cu and Zn would probably be of natural origin. Lastly Cd probably came from a diffuse pollution sources in the harbour due to its unique binding characteristic. The mobility of heavy metals varied depending on location and the heavy metal type. The mobility of metals followed the order: Si > Zn > Fe > Cu> Al> Cd> Pb > Sn > Hg. The high percentage of Cd and Pb in the bioavailable forms suggested the need to keep close surveillance on these metals because of their high toxicity.  相似文献   

4.
Crosbie  Julie  Longnecker  Nancy  Davies  Fleur  Robson  Alan 《Plant and Soil》1993,(1):449-452
Seed of narrow-leafed lupin (Lupinus angustifolius L.) produced in Western Australia often has low manganese (Mn) concentration because of low Mn availability in the soil during grain filling. A major problem of lupin production is poor seedling establishment. We tested the hypothesis that low Mn concentration in lupin seeds decreases emergence.The experiment was a factorial design comparing emergence of lupins (cv. Gungurru) grown under glasshouse conditions from seed with 2 different internal Mn concentrations (7 or 35 mg Mn kg–1 DW) and with 2 external Mn fertiliser treatments (0 or 10 mg MnSO4.H2O kg–1 soil). There were no visible differences between the seeds. Emergence was monitored and plants were harvested 17 days after sowing.Emergence was approximately 60% in all pots sown with low Mn compared to 100% in pots sown with high Mn seed. Application of Mn did not increase the final emergence of low Mn seed. Seed viability was assessed by staining with tetrazolium chloride, a common test used in seed testing laboratories. All high Mn seed were viable while 34% of low Mn seed were completely or partly unstained and therefore were non-viable. We have shown that low Mn supply during seed filling may lead to production of non-viable seed that cannot be visually distinguished from viable seed..  相似文献   

5.
The influence of FeEDDHA (0, 0.2 and 2 μg Fe g−1 soil) and NaH2PO4·H2O (0 and 120 μg Pg−1 soil) on the growth of two Fe-ineffective soybean (Glycine max L. Merr.) varieties (anoka and T203) on a calcareous soil at two soil temperatures (16 and 24°C) was compared under greenhouse conditions. The two soybean varieties differed in the following respects: (a) T203 accumulated smaller concentrations of Fe in washed tops than Anoka under comparable conditions; (b) T203 was more susceptible to Fe deficiency and its accentuation by high levels of fertilizer P than Anoka; (c) T203 accumulated lower quantities of Mn in tops than Anoka under comparable conditions; (d) T203, but not Anoka, developed Mn deficiency symptoms when treated with P and 2 μg Fe g−1 at 16°C. Fe deficiency was more severe in both varieties at the higher soil temperature due apparently to: (a) greater plant concentration of P in tops at 24°C; and/or (b) an increased rate of plant growth and greater dilution of Fe in young tissue at 24°C. Foliar P concentration was increased much more than foliar Fe concentration by an increase in soil temperature. Severely Fe deficient T203 plants grown without FeEDDHA at 24°C accumulated less foliar Mn than their FeEDDHA counterparts. Comparisons of Fe effectiveness of various soybean cultivars based on relative responses to FeEDDHA can be influenced by differential effects on Mn nutrition.  相似文献   

6.
The coastal marine sediments near Santa Rosalía on the eastern coast of the Baja California Peninsula (Mexico) are heavily polluted by metals due to copper mining and smelting over the past century (up to 1984). The present study compares the accumulation of metals in the brown seaweed Padina durvillaei from the central segment of the coast of Santa Rosalía (polluted by Co, Cu, Mn and Zn) and from two segments north and south of the known “hot spot”. The seaweed samples were collected in May and August 2004 and June 2005 at 13 stations located along the Santa Rosalía mining region. Heavy metal concentrations were measured by instrumental neutron activation analysis (Co and Fe) directly in dried homogenized subsamples or by flame atomic absorption spectrophotometry (Cd, Cu, Mn, Ni, Pb and Zn) after complete strong acid digestion of sub-samples. The means and standard deviations of the concentrations in dry tissues of Padina durvillaei specimens for all the studied metals and stations lie in the following sequence: Cd (3.6 ± 1.6 mg kg−1) < Co (6.5 ± 6.1 mg kg−1) < Pb (7.8 ± 6.2) < Ni (9.96 ± 5.28 mg kg−1) < Cu (53 ± 38 mg kg−1) < Zn (63 ± 43 mg kg−1) < Mn (295 ± 269 mg kg−1) < Fe (2243 ± 2325 mg kg−1). This increase of the average concentrations was statistically significant. Principal Component Analysis showed that Factor 1 (36.46%) displays high positive loadings for Co, Cu, Mn and Zn, reflecting the influence of local anthropogenic pollution on the seaweed composition, while Factor 2 (26.91%) is important for Co, Fe and Ni and probably corresponds to the adsorption or accumulation of terrigenous elements of the regional origin, while Factor 3, with a high positive loading for Pb and a high negative loading for Cd, is probably controlled by local and regional anthropogenic input of Pb and episodic supply of Cd by local upwellings. The results of ANOVA for each element do not show any significant differences between the average concentrations for Cd, Fe, Ni and Pb in the seaweed of the three segments, or between the central and southern segments for Cu, Mn and Zn. Cobalt contents in the seaweed from the northern and central segments are, however, significantly different from the southern segment. This indicates that element concentrations in Padina durvillaei generally do not follow the drastic increases and gradients of Cu, Co, Mn and Zn contents detected in surface sediments. The apparent contradiction could be explained by a low geochemical mobility of these metals in the polluted sediments, composed mainly of stable residues of smelter wastes, with very low content of organic matter usually driving diagenetic mobilization of some metals into interstitial waters and then to the overlying water.  相似文献   

7.
Ma  Qifu  Longnecker  Nancy  Atkins  Craig 《Plant and Soil》2002,239(1):79-85
Narrow-leafed lupin (Lupinus angustifolius L.) is usually grown in sandy, acidic and phosphorus (P) deficient soil with low yield and variable harvest index. This study aimed to examine the effects of varying P supply on lupin growth, seed yield and harvest index. Non-abscission plants (cv. Danja) were grown in Lancelin sand at seven rates of P supply (5, 10, 15, 20, 25, 30 or 40 mg kg–1) in a naturally-lit glasshouse. The rate of leaf emergence, flowering time and flower number were decreased or delayed by low P supply (5, 10 or 15 mg kg–1), with no differences at P rates higher than 20 mg kg–1. High P supply (25, 30 or 40 mg kg–1) increased plant seed yield and harvest index largely by increasing the number of pods and consequently yield on the lateral branches, but had less effect on the number of seeds per pod and seed size. Seed yield and seed P concentration continued to increase up to 40 mg P kg–1but harvest index plateaued at 25 mg P kg–1, indicating that low P supply decreased reproductive growth more than vegetative growth in narrow-leafed lupin.  相似文献   

8.

The hyperaccumulator Sedum alfredii Hance (S. alfredii) may be employed for zinc (Zn) and cadmium (Cd)-polluted soil remediation. However, the low phytoremediation efficiency, related to the low biomass production, limits its use with that purpose. In this experiment, nitrogen (N), phosphorus (P), and potassium (K) fertilizers, and organic manure were applied to investigate the phytoremediation ability of S. alfredii. Hydroponic and pot experiments were conducted using Zn-Cd polluted soil. The hydroponic experiment indicated that appropriate fertilizer application could increase (p < 0.05) the amount of accumulated Zn and Cd in S. alfredii. When N supply ranged from 0.5 to 2.5 mmol L−1, it could improve growth and accumulation of Zn and Cd in whole plants of S. alfredii. The 1 mmol L-1 N was an optimal N dosage for shoot biomass production and Cd accumulation in shoots, while the 2.5 mmol L-1 was an optimal N dosage for Zn accumulation in shoots. Both low (<0.05 mmol L-1) and high (>0.8 mmol L-1) P supply decreased growth, and Zn/Cd accumulation in whole plants of the studied species. The 0.1 mmol L-1 P was an optimal dosage for S. alfredii biomass production and Zn/Cd accumulation in shoots. The supply levels within the range from 0.3 to 1 mmol L-1 K could significantly improve the biomass production of S. alfredii and its capability to accumulate Zn and Cd in the biomass. The 0.5 mmol L-1 K was an optimal dosage for the whole biomass production and Zn accumulation in shoots, while the 1 mmol L-1 was an optimal K dosage for Zn accumulation in shoots, which was 17.2% higher than the control. Moreover, the soil pot experiment showed that the combination of organic (fermented manure) and inorganic fertilizers made significant effects on the Zn and Cd-polluted soil remediation by S. alfredii. These effects varied, however, with the application of different proportions of N, P, K and organic matter. The Zn accumulation by S. alfredii reached the highest efficiency ability under the highest fertilizer mixing rate (N: 50 mg kg-1, P: 40 mg kg-1, K: 100 mg kg-1, organic matter: 1%). Even more, S. alfredii showed the strongest ability to accumulate Cd with a lower fertilizer mixing rate (N: 25mg kg-1, P: 20mg kg-1, K: 50 mg kg-1, organic matter: 0.5%).

  相似文献   

9.
Summary PI54619-5-1 soybeans (Glycine max L.), which are very susceptible to Fe deficiency, were grown for 24 days in calcareous (10%) Hacienda loam soil with different levels of S each with and without 2 ppm Fe added as FeEDDHA (ferric ethylenediamine di (o-hydroxyphenylacetic acid). The S application rates ranged from sufficient to neutralize about 15% to more than all of the CaCO3 present if the S were all oxidized. The soil pH values at harvest time ranged from 7.4 to 6.0. The highest S rate was 10% by weight of soil and it overcame Fe deficiency without FeEDDHA. The S treatments resulted in increased concentrations of Fe and other metals in leaves, but the FeEDDHA treatments increased yields more than did S. At the lower levels of S, the effects of S and FeEDDHA on Fe concentrations in leaves were additive, but not at the highest level of S. The FeEDDHA overcame much of the effect that S had on increasing Mn concentrations in leaves. It had a similar effect, particularly at the low S levels, on Zn, Cu, Al, B, and Ni concentrations in leaves. A level of S sufficient to neutralize only 15% of the CaCO3 of the soil increased leaf concentrations of Fe, Mn, Zn, Cu, Al, B, Ni, Si, and P. The effect for Zn, Cu, and Al appreared maximum at this level. A combination of the1/2% S and the FeEDDHA resulted in the most favorable micronutrient balance. Bush beans (Phaseolus vulgaris L. var. Improved Tendergreen) grown in calcareous soil with S insufficient to neutralize all the CaCO3 had increased Mn, Ni, and Mo and decreased Ba levels in leaves. CaSO4 as a source of S did not have the same effects as elemental S.  相似文献   

10.
The concentrations of nine metals were measured by atomic absorption spectrophotometry in surface sediments of three coastal creeks, namely, the Ifie, Egbokodo and Ubeji creeks, in the Niger Delta of Nigeria, from August 2012 to January 2013. The aim of the study was to provide information on the spatial and seasonal distribution patterns, degree of contamination, and ecological risks of metals in these sediments. The mean concentrations of the nine metals in these creek sediments ranged from 0.30 to 3.20?mg kg?1 Cd; 10.7 to 24.7?mg kg?1 Pb, 125 to 466?mg kg?1 Cr; 3.1.10 to 14.9?mg kg?1 Cu; 4.7 to 14.3?mg kg?1 Co; 61.1 to 115?mg kg?1 Ni; 106 to 183?mg kg?1 Mn; 52.0 to 170?mg kg?1 Zn and 5 469 to 20 639?mg kg?1 Fe. In general, the metal concentrations were higher in the dry season than the wet season, except for Cr. The concentrations of Cd, Cr, Ni and Zn were above their regulatory control limits in sediment as specified by the Nigerian Regulatory Authority and Cd was identified as the main ecological risk factor. The enrichment factors for the studied metals followed the order: Cd > Cr > Ni > Zn > Pb > Co > Mn > Cu. The average multiple pollution index values indicated that these sediments were severely polluted with significant inputs from Cd, Ni and Cr.  相似文献   

11.
The objective of this research was to determine the effect of the chelate EDTA (ethylenediaminetetraacetic acid), which is used in phytoremediation, on plant availability of heavy metals in liquid sewage sludge applied to soil. Sunflower (Helianthus annuus L.) was grown under greenhouse conditions in a commercial potting soil; the tetrasodium salt of EDTA (EDTA Na4) was added at a rate of 1 g kg-1 to half the pots. Immediately after seeds were planted, half of the pots with each soil (with or without EDTA) were irrigated with 60 ml sludge, and half were irrigated with 60 ml tap water. For the subsequent five irrigations, plants in soil with EDTA received either sludge or tap water containing 0.5 g EDTA Na4 per 1000 ml, and plants in soil without EDTA received sludge or tap water without EDTA. Of the four heavy metals whose extractable concentrations in the soil were measured (Cu, Fe, Mn, and Zn), only Zn had a higher concentration in sludge-treated soil with EDTA compared to sludge-treated soil without EDTA. The concentrations of Fe, Cu, and Mn were similar in sludge-treated soil with and without EDTA. Of the three heavy metals whose total concentrations in the soil were measured (Cd, Pb, Cr), Pb (<10 mg kg-1) and Cd (< 1 mg kg-1) were below detection limits, and Cr was unaffected by treatment. The concentration of all measured elements in plants (Cd, Cu, Fe, Zn, Pb) was higher than the concentrations measured in the soil. With no EDTA, sludge-treated plants had a higher concentration of the five heavy elements than plants grown without sludge. Cadmium was lower in sludge-treated plants with EDTA than plants with EDTA and no sludge. After treatment with EDTA, the concentrations of Cu, Fe, and Zn were similar in plants with and without sludge. Lead was higher in plants with EDTA than plants without EDTA, showing that EDTA can facilitate phytoremediation of soil with Pb from sewage sludge.  相似文献   

12.
Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg?1 Zn, 70 mg kg?1 Cd and 10,000 mg kg?1 S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.  相似文献   

13.
Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg?1 of P, and the Cd content (up to 288 mg kg?1 of P) was several times higher than the regulatory limits of different countries. Some micronutrient sources presented the highest concentrations of Mn and Pb. In the cases of N, K, and NK fertilizers, the trace element concentration was very low, sometimes below the detection limits. In some agricultural systems the input of trace elements such as As and Cd to the soil through P fertilizers application may be higher than the outputs through plant uptake and leaching; therefore the long-term use of these fertilizers may cause the trace element concentration to increase in the plow layer of agricultural soils.  相似文献   

14.
Moraghan  J. T.  Padilla  J.  Etchevers  J.D.  Grafton  K.  Acosta-Gallegos  J.A. 《Plant and Soil》2002,246(2):175-183
The effect of soil and genotype on iron concentration [Fe] in common bean (Phaseolus vulgaris L.) seed was studied in the greenhouse. Liming an acid soil increased soil pH from 6.0 to 7.3 but had no effect on seed [Fe] of three bean genotypes (Voyager, T39, UI911) from the Middle American gene pool in North Dakota. However, liming decreased seed-manganese concentration [Mn]. The influence of FeEDDHA on Fe accumulation in seed of the three bean genotypes, grown on acid (pH=6.0) and naturally calcareous (pH=8.2) soils, was also studied in North Dakota. Seed from the acid soil contained 25% higher [Fe] than seed from the calcareous soil. FeEDDHA increased seed [Fe] only on the calcareous soil, but reduced seed [Mn] on both soils. Voyager seed, characterized by a relatively low [Fe] in the seed coat, had a higher seed [Fe] than the other two genotypes. The hypothesis that high seed [Fe] is characterized by a low seed-coat [Fe] was next investigated. Voyager, T39 and 10 diverse Latin American genotypes from the Middle American gene pool were grown on a soil (pH=7.0) with Andic properties in Mexico in the presence and absence of FeEDTA. FeEDTA increased seed [Fe]. Seed of Voyager and a Mexican genotype (Bayo 400) had the highest seed [Fe]. However, Bayo 400, unlike Voyager, contained a high percentage of its seed Fe in the seed coat. Consequently, a high seed [Fe] genotype does not necessarily have a low seed-coat [Fe]. Both soil and genotype affect Fe accumulation in bean seed.  相似文献   

15.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

16.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

17.
Abstract

The aim of this study was to determine the levels of heavy metals (Al, Cd, Cr, Cu, Fe, Mn and Pb) in the geochemical fractions of the coastal surface sediments from the Bacochibampo Bay in Sonora, Mexico. Two surveys were conducted (March and September) during 2004, at eight sampling stations inside the bay, and in three natural effluents discharged into this bay. The extraction of metals was carried out using a microwave oven method and the quantification was done by atomic absorption spectro-photometry. The highest detected concentration of total heavy metals in sediments was: Fe>Al>Mn>Pb>Cr>Cu>Cd, with the following concentration values: Fe (1.72%), Al (1.03%), Mn (416.31 mg kg?1), Pb (11.73 mg kg?1), Cr (11.41 mg kg–1), Cu (6.78 mg kg–1) and Cd (1.33 mg kg–1). The levels of total heavy metals (Al, Cr, Cu, Fe, Mn and Pb) were much less than the lowest observable effect level (LEL) which indicates that the sediments were not from polluted areas and that the origin of the metals was due to natural conditions. However, concentrations of Cd were much higher than the low effect level (LEL), over 40% of metal was detected in the exchangeable fraction and carbonates. The normalisation study showed a high degree of enrichment of Cd in all the sampling stations in the Bacochibampo Bay (samples EF 34–87) and in the natural flows that discharge into this bay (samples EF 22–35%), which exceeds by several orders of magnitude the value of sample EF 1, which indicates that Cd is anthropogenically induced. Based on these results, it is important that precautionary measures are established, since the deposited Cd in these fractions may be potentially toxic, due to the physicochemical changes that occur in the environment. Thus, future studies will focus on identifying problems involved with Cd bioaccumulation in different trophic levels.  相似文献   

18.
Two experiments were conducted in a factorial combination of three Zn levels (0, 10 and 40 mg Zn kg-1 soil) and two P levels (0 and 200 mg P kg-1 soil). Experiment 1 was carried out during winter in a heated glasshouse, and experiment 2 during summer under a rain shelter. Plants of dwarf bean (Phaseolus vulgaris L., cv. Borlotto nano) were grown in pots filled with sandy soil. In both experiments, leaf Zn concentration was reduced by the addition of P to plants grown at low Zn supply. However, leaf Zn concentration lower than the critical level was observed only during experiment 2, and the main effects of low Zn were reductions of internode length, light use efficiency and maximum photosynthetic rate. In plants with leaf Zn concentration lower than the critical level, saturating irradiance levels fell from 1000 μmol m-2 s-1 PPFD to 300–400 μmol m-2 s-1 PPFD. Reduction of net photosynthesis was observed from the beginning of flowering and led to decreased seed production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

20.
Abstract

Despite the fact that cadmium (Cd) is a non-essential element for plants, it can influence nutrients and affect human health. Potassium (K) can influence the transportation of heavy metals (HMs) in soil-plant systems. Here, a greenhouse experiment was conducted to evaluate the effect of Cd and K fertilizers on the different partitioning forms of HMs, their concentrations, uptake in the shoots and roots of Ocimum basilicum. Treatments comprised 2 levels of Cd (0 and 40?mg kg?1) and three levels of K (0, 100, and 200?mg kg?1) from three sources, i.e. KCl, K2SO4, and K-nano-chelate. 40?mg Cd kg?1 increased the shoot (above ground parts) Cd concentration. Addition of K as KCl, K2SO4, and K-nano-chelate increased the presence of Cd in shoots by 86, 82 and 76%, respectively, compared to the control. Using the nano-chelate of K can increase the accumulation of Cd in plants grown on contaminated soils to lesser content than that of the other forms of K. Application of 40?mg Cd kg?1 reduced the concentration of Zn, Cu, and Mn in the shoot, but increased shoot Fe concentration. Transfer factor (TF), which is the ratio of metal concentration in shoot to its concentration in root, of the studied HMs, was significantly affected by Cd and K treatments. Therefore, the proper form and dose of chemical fertilizers should be applied in Cd-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号