首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Greenhouse and growth chamber experiments were conducted to determine the effect of soil moisture and temperature on the phytotoxicity in wild oat of imazamethabenz or fenoxaprop tank-mixed with certain additives or MCPA. The surfactants Agral 90 at 0.5% and Enhance at 0.5% increased imazamethabenz phytotoxicity under both moist and drought conditions. These surfactants had no significant effect on fenoxaprop phytotoxicity regardless of the soil moisture regimes. Fenoxaprop activity was increased by ammonium sulfate [(NH4)2SO4] at 1% but only under well watered conditions. Wild oat control with imazamethabenz was also slightly enhanced in a well watered regime by the addition of sodium bisulfate (NaHSO4) at 0.13%. At high temperature (30/20°C) and low temperature (10/5°C), the phytotoxicity of imazamethabenz was increased when tank-mixed with Agral 90 at 0.25% or NaHSO4 at 0.13% compared with that when imazamethabenz was applied alone, if soil moisture was adequate. There was no such increase under conditions of drought and high temperature. (NH4)2SO4 at 1% did not significantly affect imazamethabenz performance irrespective of temperature/soil moisture conditions. The phytotoxicity to wild oat of imazamethabenz or fenoxaprop was not changed by tank-mixing with MCPA isooctyl ester at 300 g a.i./ha, regardless of soil moisture levels. The reduced fenoxaprop phytotoxicity in wild oat due to moisture stress was not readily alleviated by the inclusion of selected additives or MCPA in the tank mixture. Received May 10, 1996; accepted January 10, 1997  相似文献   

2.
The influences of nutrient supply and plant growth regulators on the phytotoxicity of imazamethabenz in wild oat (Avena fatua L.) were evaluated in the greenhouse. Wild oat plants supplied with half-strength rather than one-eighth-strength Hoagland solution were more susceptible to imazamethabenz, showing greater growth reduction in main shoot and tillers. The improved herbicide efficacy at higher nutrient levels appeared related to increased herbicide interception by the greater leaf surface available. Leaves developing at either nutrient level did not differ significantly in epicuticular wax, so differential absorption appeared unlikely. Wild oat plants supplemented with nutrient, switching from low to high levels at the time of herbicide application, were as susceptible to imazamethabenz or even more so than plants growing with a constant high level of nutrition. The wild oat pure-line Montana 73, a strongly tillering line, was more susceptible to imazamethabenz than the limited-tillering line, Crop Science 40. Both 2,4-D and GA3 reduced imazamethabenz-induced tillering. Imazamethabenz efficacy was increased by GA3 but not by 2,4-D. These results support the hypothesis that lowering apical dominance of wild oat increases imazamethabenz activity in tillers, and that increased tillering following sublethal doses of imazamethabenz treatment is associated with the release of apical dominance.  相似文献   

3.
The release of apical dominance by the physical destruction in situ of the apical meristem and associated leaf primordia (decapitation) promoted the growth of tillers in non-herbicide-treated wild oat plants, as indicated by increased tiller lengths and fresh weights. At 96 h after [14C] herbicide treatment following decapitation, the absorption of [14C]imazamethabenz and total translocation of radioactivity were respectively increased by 28% and 49%. By 96 h after [14C]imazamethabenz application, the radioactivity detected in the roots of decapitated plants was 45% higher than that in the roots of nondecapitated plants while the radioactivity in tillers of decapitated plants was 2.6-fold that in tillers of intact plants. Decapitation together with foliar spraying of imazamethabenz at 200 g ha–1 further reduced tiller fresh weight, greatly decreased the total tiller number, and thereafter significantly increased overall phytotoxicity by 32% as measured by total shoot fresh weight. The results of this study support the hypothesis that main shoot apical dominance limits translocation of applied imazamethabenz to lateral shoots, rendering tillers less susceptible to growth inhibition by the herbicide.  相似文献   

4.
Summary The absorption of N from foliar applications of various N sources by pine seedlings was studied under greenhouse conditions. Needles dipped into solutions of 4,000 ppm N from Ca(NO3)2 were burned slightly at the tips at two weeks. Although higher concentrations of (NH2)2CO and (NH4)2SO4 could be used without plant damage, a uniform concentration of 3,000 ppm was used in all comparative tests of sources. The level of tissue N, brought about by soil fertilization 6 weeks previously, did not significantly influence absorption of foliarly applied N15. Soil moisture maintained at near 100, 60 to 70, and 25 to 35 per cent of water-holding capacity of the Leon fs did not significantly affect the absorption of tagged N. Greater quantities of N15 were absorbed as urea than as Ca(NO3)2 or (NH4)2SO4. The use of a spreader-sticker increased the N15 uptake, regardless of the N compound used. However, the magnitude of the increased absorption associated with use as a sticker varied from 490 per cent with (NH4)2SO4 to 260 per cent with urea. It was calculated that approximately 71, 45, and 39 per cent of foliar applied N was absorbed into needles within 24 hours from urea, Ca(NO3)2, and (NH4)2SO4, respectively. Journal Paper No3588 of the Florida Agricultural Experiment Station, Gainesville, Florida.  相似文献   

5.
Summary The purpose of this study was to investigate the phytotoxicity of nitrapyrin 2-chloro-6-(trichloromethyl)pyridine to sunflower (Helianthus annuus L.) under different N regimes and to see if N forms affect the phytotoxicity of nitrapyrin. Sunflower was grown in pot culture for 21 days and was fertilized with (NH4)2SO4, NH4NO3 and NaNO3 to provide 0, 100 and 200 ppm N and with nitrapyrin application of 0 and 20 ppm. All N-treated sunflower plants in all N regimes and regardless of titrapyrin treatment produced more root and shoot dry weights and contained a significantly higher N than untreated check. Nitrapyrin toxicity appeared as a curling of leaf margin and a tendril type of stem growth, the visible toxicity symptoms decreased in the order: (NH4)2SO4>NH4NO3>NaNO3. Furthermore nitrapyrin addition suppressed sunflower growth in each N regime, the suppressing effect being greater with (NH4)2SO4 and NH4NO3 than as with NaNO3. Although, shoot growth from plants receiving nitrapyrin was not significantly affected by any N regime, root growth of nitrapyrin-treated plants was somewhat restricted by NH4 +−N nutrition relative to NO3 −N nutrition.  相似文献   

6.
The response of wild oat to imazamethabenz varies with the growth stage, but the role of tillers in this regard is unclear. Removal of tillers at the three-leaf stage before spraying with imazamethabenz did not significantly affect the total shoot fresh weight measured 3 weeks later. The leaf area and dry weight of intact plants at the three-leaf stage were 17–21% greater than for plants with coleoptilar and first leaf main shoot tillers (T0 and T1) removed. The greater leaf area may have increased herbicide interception per plant. Similar fresh weight reductions in main shoot, total tillers, and total shoots were found whether imazamethabenz was applied to the plant at the two-leaf without tillers or the three-leaf with two tillers stage. Imazamethabenz applied only to the main shoot reduced total shoot dry weight more than an equivalent amount of imazamethabenz applied only to tiller T1 or applied over the whole shoot. Imazamethabenz had the least inhibitory effect on whole plant growth when applied only to T1. When 14C-herbicide was applied to the first main shoot leaf of plants at the three-leaf stage with two tillers, the 14C translocated 38% to roots, 33% to the main shoot, and nearly 30% to all tillers. When 14C-herbicide was applied to the first leaf of T1 then the 14C translocated 50% to T1, 25% to the main shoot, 20% to roots, and 5% to all other tillers. The translocation pattern and fresh weight values suggested that the presence of early tillers during herbicide application neither increased nor decreased imazamethabenz efficacy in wild oat. Received June 4, 1997; accepted June 5, 1997  相似文献   

7.
Controlled environmental experiments were carried out to determine the phytotoxicity of several graminicides on wild oat (Avena futua L.) as influenced by combination of drought and temperature stress or drought and low relative humidity. Compared with unstressed conditions (20/15°C plus adequate soil moisture), imazamethabenz phytotoxicity to wild oat was reduced significantly when plants were exposed to a combination of drought and high temperature (30/20°C) stress. Imazamethabenz phytotoxicity was reduced almost as much by high temperature stress alone as by a combined temperature and drought stress. When herbicides were applied to wild oat plants subjected to drought alone or to drought plus high temperature, the observed reduction in phytotoxicity from greatest to least was: fenoxaprop = diclofop > flamprop > imazamethabenz. Fenoxaprop performance was most inhibited by the combination of drought plus high temperature, although drought alone and to a lesser degree, high temperature alone, inhibited fenoxaprop action. High temperature had an adverse effect on the efficacy of fenoxaprop at lower application rates. Raising fenoxaprop application rates to 400 g ha−1 overcame the inhibition caused by high temperature alone but only partially alleviated the effect of drought combined with high temperature. When plants were grown under a low temperature regimen the imposition of drought stress had little effect on imazamethabenz phytotoxicity but did reduce fenoxaprop phytotoxicity. At 25/15°C drought reduced the phytotoxicity of fenoxaprop and diclofop greatly but had no significant impact on the performance of any of the herbicides examined, regardless of soil moisture regimen. Received April 14, 1997; accepted September 22, 1997  相似文献   

8.
The absorption and translocation of fenoxaprop-ethyl and imazamethabenz-methyl were investigated in wild oat (Avena fatua L.) plants grown under different temperature and light intensity conditions by using 14C tracer techniques. The phytotoxicity of both herbicides, applied as individual droplets, was also determined under similar environments. The absorption of fenoxaprop-ethyl and imazamethabenz-methyl was increased by high temperature (30/20°C) and to a lesser extent by 70% shading; low temperature (10/5°C) had limited effect on the absorption. The basipetal translocation of fenoxaprop-ethyl was not affected by high temperature, and the increase in imazamethabenz-methyl translocation at high temperature was likely the result of the increased absorption. Low temperature decreased total translocation and translocation efficiency in both fenoxaprop-ethyl and imazamethabenz-methyl. Low light intensity tended to reduce the efficiency of basipetal translocation of both herbicides. Fenoxaprop-ethyl phytotoxicity was reduced by high temperature but not by low temperature. Temperature had little effect on imazamethabenz-methyl effectiveness. Under 70% shading, the phytotoxicity of both herbicides was enhanced.Abbreviation S.E.D. standard errors of difference  相似文献   

9.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   

10.
Summary The behavior of soil N, fertilizer N and plant N was studied in a greenhouse experiment with 2 plant densities of rice (IR 36) under flooded conditions. Increasing plant density from 25 hills m2 to 50 hills m2 increased tiller number and panicle number but had no influence on grain yield. The yield of grain was linearly related to N content of the above ground dry matter at harvest (r2=.96) and thus the effect of manipulating the N supply on yield was directly related to N uptake.Mixing of (NH4)2SO4 with the soil volume before transplanting resulted in increases in N in the aboveground dry matter equal to 87% of the applied N. When (NH4)2SO4 was broadcast into the flood water at 4 stages of growth beginning 25 DAT, the corresponding increase was 77% of the applied N. When (NH4)2SO4 was split between shallow mixing before transplanting and a broadcast application of 32 DAT, the corresponding increase was 42%. Thus several applications of fertilizer N increased grain production per unit of applied N.Inorganic N extractable by KCl was a useful but not an infailible guide to the behavior of the soil and fertilizer inorganic N.  相似文献   

11.
During three rice-growing seasons in Uruguay, field experiments were conducted to study the contribution of cyanobacterial inoculation and chemical N fertilization to rice production. Neither grain yield nor fertilizer recovery by the plant were affected by inoculation with native cyanobacterial isolates. A low fertilizer use efficiency (around 20%) was observed when labelled (NH4)2SO4 was applied at sowing. Recovery of applied 15N by the soil–plant system was 50%. Inoculation did not modify 15N uptake by the plant when the fertilizer was three-split applied either. The total N-fertilizer recovery was higher when the fertilizer was split than when applied in a single dose. Plant N-fertilizer uptake was higher when the fertilizer was applied at tillering. Uptake of 15N from cyanobacteria by rice was studied in a greenhouse pots experiment without chemical nitrogen addition. Recovery of 15N from labelled cyanobacteria by rice in greenhouse growth conditions was similar to that of partial recovery of (NH4)2SO4 applied at sowing in the field. Cyanobacterial N mineralization under controlled conditions was fast as cyanobacterial N was detected in plants after 25 days. Moreover 40 days after inoculation non-planted and inoculated soil had more inorganic N than the non-inoculated one.  相似文献   

12.
Summary In Gibberella fujikuroi, ammonium (NH4 +) interfered with the production of gibberellic acid (GA3). Optimal production occurred at 19 mm (NH4)2SO4 and the synthesis of GA3 was reduced threefold in a medium with 38 mm (NH4)2SO4. Using a resting cell system with mycelia previously grown on two concentrations (19 mm and 38 mm) of (NH4)2SO4, it was found that NH4 + depressed synthesis of the gibberellin-synthesizing enzymes. Furthermore, addition of NH4 + to a producing system shut off gibberellin formation, indicating that the negative effect of NH4 + ions is also due to inhibition of one or more enzymes in the gibberellin biosynthesis pathway. The onset of gibberellin biosynthesis in media with high (38 mm) and low (19 mm) concentrations of (NH4)2SO4 was studied by addition of cycloheximide to batch cultures of various ages. Offprint requests to: B. Brückner  相似文献   

13.
Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG–(NH4)2SO4 and 1.0?mol l?1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.  相似文献   

14.
Salt-dependent structural changes of rat liver chromatin isolated by an extraction procedure not involving shear and exogeneous nucleases were investigated by sedimentation and light scattering methods. The effects observed are complex involving changes of the molecular weight and expansion. Between 0.1 M and 0.2 M (NH4)2SO4 where histone H1 is released, a fragmentation into molecules of half molecular weight is found which is accompanied by an expansion into a more extended conformation gradually increasing to 0.4 M (NH4)2SO4. The H1-free chromatin does not exhibit the reduction in molecular weight but undergoes this expansion. The original conformation is not reversible on re-decreasing the salt concentration to 0.1 M (NH4)2SO4.  相似文献   

15.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

16.
Summary Nitrogen-15 labelled urea, aqueous NH3 and (NH4)2SO4 were applied to soils contained in pots. The fertilizers were injected in 5 cm3 of solution, 3.5 cm below the soil surface, to simulate a fertilizer band in the field. Ryegrass (Lolium perenne) was planted, and several cuttings and roots were harvested. Efficiency was determined as the recovery of fertilizer-N in the plant tissues and soil.Total recovery varied from 94 to 100%. There was no significant difference between the total recovery of the 3 fertilizer forms, although recovery in the soil component was lower for (NH4)2SO4 than for urea or NH3. There was a significant difference in total recovery between soils due to the soil component. Only small amounts of15N were not recovered, whereas laboratory experiments reported elsewhere had demonstrated that substantial gaseous losses of N as N2, N2O and NO +NO2 occurred in these soils during nitrification of added NH3 fertilizer.  相似文献   

17.
The presence of low levels (2–4 mM) of (NH4)2SO4 in sporulation medium results in a complete inhibition of ascus formation in Saccharomyces cerevisiae. Tests with other utilizable nitrogen sources and with the non-metabolizable ammonia analog, methylamine, indicate that the primary inhibitory effect is exerted by ammonium (NH4+) and not a metabolite of NH4+. Viability is also reduced but to a much lesser extent than sporulation. The levels of NH4+ that repress sporulation do not affect the rate of oxygen utilization or ATP levels of cells in sporulation medium. The period during which the cells are sensitive to NH4+ is relatively long, and they do not escape inhibition until the meiotic commitment stage. The most sensitive period is roughly coincident with the end of premeiotic DNA synthesis. NH4+ does not inhibit the initiation of premeiotic DNA synthesis, but DNA replication is arrested after initiation and continued incubation in the presence of NH4+ leads to massive DNA degradation. Commitment to recombination is not affected specifically by NH4+. Preliminary experiments with an NH4+-resistant mutant indicates that levels of NH4+ sensitivity are under genetic control.  相似文献   

18.
A greenhouse study was designed to test the effects of sodium sulphate (Na2SO4) on red-osier dogwood (Cornus stolonifera Michx) seedlings in the presence and absence of additional calcium (Ca2+). Changes in growth parameters, ion and carbohydrate accumulation and cell wall composition were examined. Calcium alleviated the effect of Na2SO4 on shoot height; however, it did not affect the reduction in shoot and root dry weights. An increased level of sodium (Na+) in roots of plant exposed to Na2SO4 was recorded in the presence of supplemental Ca2+ whereas there was no change in potassium (K+) and Ca2+ levels. In shoots of seedlings treated with Na2SO4, the addition of Ca2+ did not affect Na+, K+ and Ca2+ levels. The amount of soluble carbohydrates was increased in leaves of seedlings treated with Na2SO4 both in the absence and presence of supplemental Ca2+. The decrease in cell wall material in response to salt stress was alleviated by Ca2+ in stem tissues although Ca2+ did not alter the changes in hemicellulose and cellulose. Sugar composition of pectins and hemicellulose were modified in stems and leaves by Na2SO4 and/or Ca2+. The results of this study showed that calcium was able to alleviate the effects of salt stress on shoot height and cell wall content of red-osier dogwood stems. Furthermore, changes occurred in cell wall composition of red osier seedlings treated with Na2SO4.  相似文献   

19.
This field manipulation study tested the effect of weekly pulses of solutions of NH4NO3 and (NH4)2SO4 salts on the evolution of CH4 and N2O from peatland soils. Methane and nitrous oxide emission from a nutrient-poor fen in northern Minnesota USA was measured over a full growing season from plots receiving weekly additions of NH4NO3 or (NH4)2SO4. At this relatively pristine site, natural additions of N and S in precipitation occur at 8 and 5 kg ha–1 y–1, respectively. Nine weekly additions of the dissolved salts were made to increase this to a total deposition of 31 kg N ha–1 y–1 on the NH4NO3-amended plots and 30 and 29 kg ha–1 y–1 of N and S, respectively, in the (NH4)2SO4-amended plots. Methane flux was measured weekly from treatment and control plots and all data comparisons are made on plots measured on the same day.After the onset of the treatments, and over the course of the growing season, CH4 emission from the (NH4)2SO4-amended plots averaged 163 mg CH4 m–2 d–1, significantly lower than the same-day control plot mean of 259 mg CH4 m–2 d–1 (repeated measures ANOVA). Total CH4 flux from (NH4)2SO4 treatment plots was one third lower than from control plots, at 11.7 and 17.1 g CH4 m–2, respectively. Methane emission from the NH4NO3-amended plots (mean of 256 mg CH4 m–2 d–1) was not significantly different from that of controls measured on the same day (mean of 225 mg CH4 m–2 d–1). Total CH4 flux from NH4NO3 treatment plots and same-day controls was 16.9 and 15.1 g CH4 m–2, respectively. In general, stable, relatively warm and wet periods followed by environmental `triggers' such as rainfall or changes in water table or atmospheric pressure, which produced a CH4 `pulse' in the other plots, produced no observable peak in CH4 emission from the (NH4)2SO4-amended plots. Nitrous oxide emission from all of the plots was below the detection limit over the course of the experiment.  相似文献   

20.
Influence of different nitrogen salts at electrical conductivity levels (EC2, 4 and 8?mmhos/cm) on tomato and root-knot nematode (Meloidogyne javanica) and their interactions was evaluated under field conditions. It was found that both diammonium phosphate ((NH4)2HPO4) and ammonium sulphate ((NH4)2SO4) were more effective than ammonium chloride (NH4Cl) in causing an obvious suppression of M. javanica infection on tomato through reducing root galling and nematode reproduction and improving tomato growth and yield and their suppressive effect was similar to that of oxamyl or ethoprophos. At higher ECs, the tested nitrogen salts did not greatly affect pH, EC and salinity of rhizospheric soil except NH4Cl at EC8 that caused higher EC and salinity over the untreated control which makes NH4Cl less suitable candidate. Therefore, the use of (NH4)2HPO4 and (NH4)2SO4 alone or in combination with other control measures could control M. javanica and improve the growth and yield of tomato under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号