首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The crystalline parasporal inclusions (crystals) of Bacillus thuringiensis israelensis (Bti), which are specifically toxic to mosquito and black fly larvae, contain three main polypeptides of 28 kDa, 68 kDa and 130 kDa. The genes encoding the 28 kDa protein and the 130 kDa protein have been cloned from a large plasmid of Bti. Escherichiacoli recombinant clones containing the 130 kDa protein gene were highly active against larvae of Aedes aegypti and Culex pipiens, while B. subtilis recombinant cells containing the 28 kDa protein gene were haemolytic for sheep red blood cells. A fragment of the Bti plasmid which is partially homologous to the 130 kDa protein gene was also isolated; it probably corresponds to part of a second type of mosquitocidal toxin gene. Furthermore, restriction enzyme analysis suggested that the 130 kDa protein gene is located on the same Bti EcoRI fragment as another kind of Bti mosquitocidal protein gene cloned by Thorne et al. (1986). Hybridization experiments conducted with the 28 kDa protein gene and the 230 kDa protein gene showed that these two Bti genes are probably present in the plasmid DNA of B. thuringiensis subsp. morrisoni (PG14), which is also highly active against mosquito larvae.  相似文献   

2.
Tipula paludosa (Diptera: Nematocera) is the major insect pest in grassland in Northwest Europe and has been accidentally introduced to North America. Oviposition occurs during late August and first instars hatch from September until mid-October. Laboratory and field trials were conducted to assess the control potential of entomopathogenic nematodes (EPN) (Steinernema carpocapsae and S. feltiae) and Bacillus thuringiensis subsp. israelensis (Bti) against T. paludosa and to investigate whether synergistic effects can be exploited by simultaneous application of nematodes and Bti. Results indicate that the early instars of the insect are most susceptible to nematodes and Bti. In the field the neonates prevail when temperatures tend to drop below 10 °C. S. carpocapsae, reaching >80% control, is more effective against young stages of T. paludosa than S. feltiae (<50%), but the potential of S. carpocapsae might be limited by temperatures below 12 °C. Mortality of T. paludosa caused by Bti was not affected by temperature even at 4 °C but the lethal time increased with decreasing temperatures. Synergistic effects of Bti and EPN against T. paludosa were observed in 3 out of 10 combinations in laboratory assays but not in a field trial. The potential of S. carpocapsae was demonstrated in field trials against early instars in October reaching an efficacy of >80% with 0.5 million nematodes m−2 at soil temperatures ranging between 3 and 18 °C. Results with Bti were strongly influenced by the larval stage and concentration. Against early instars in autumn between 74 and 83% control was achieved with 13 kg ha−1 Bti of 5,700 International Toxic Units (ITUs) and 20 kg ha−1 of 3,000 ITUs. Applications in spring against third and fourth instars achieved between 0 and 32% reduction. The results indicate that application of Bti and nematodes will only be successful and economically feasible during the early instars and that the success of S. carpocapsae is dependent on temperatures >12 °C. Synergistic effects between S. carpocapsae and Bti require more detailed investigations in the field to determine maximal effect.  相似文献   

3.
Summary The insecticidal cry (crystal) genes from Bacillus thuringiensis (Bt) have been used for insect control both as biopesticides and in transgenic plants. Discovery of new insecticidal genes is of importance for delaying the development of resistance in target insects. The diversity of Bt strains facilitates isolation of new types of cry and vip (vegetative insecticidal protein) genes. PCR is a useful technique for quick and simultaneous screening of Bt strains for classification and prediction of insecticidal activities. PCR together with other methods of analysis such as RFLP, gene sequence determination, electrophoretic, immunological and chromatographic analysis of Cry proteins and insect bioassays for evaluation of toxicity have been employed for identification of new insecticidal proteins. Some other new approaches have also been devised. Many Bt strains with novel insecticidal genes have been found. A desired combination of Cry proteins can be assembled via site-specific recombination vectors into a recipient Bt strain to create a genetically improved biopesticide. For better pest control, the cry genes have been transferred to plants. Stacking of more than one insecticidal gene is required for resistance management in transgenic crops. Modification of Cry proteins through protein engineering for increasing the toxicity and/or the insecticidal spectrum is also a promising approach, but requires detailed understanding of the structure and function of these proteins and analysis of toxin-receptor interactions. More research into this area will provide useful insights for the design of toxins for management of insect resistance. Insecticidal genes from other bacteria and plants are also being examined for their potential for deployment in transgenic crops. Stringent implementation of resistance management is needed for maintaining the efficacy of Bt transgenic crops and deriving maximum economic and environmental benefit.  相似文献   

4.
Vibrio cholerae O1 and V. cholerae non-O1 strains isolated from environmental samples collected in São Paulo, Brazil, during cholera epidemics and pre-epidemic periods were examined for the presence of toxin genes. V. cholerae O1 strains isolated from clinical samples in Peru and Mexico, and V. cholerae O139 strains from India were also examined for the presence of ctx (cholera toxin gene) and zot (zonula occludens toxin gene) by polymerase chain reaction (PCR). A modified DNA-extraction method applied in this study yielded satisfactory recovery of genomic DNA from vibrios. Results showed that strains of V. cholerae O1 isolated during the preepidemic period were ctx -/zot - whereas strains isolated during the epidemic were ctx +/zot +. All V. cholerae non-O1 strains tested in the study were ctx -/zot -, whereas all V. cholerae O139 strains were ctx +/zot +. Rapid detection of the virulence genes (ctx and zot) can be achieved by PCR and this can serve as an important tool in the epidemiology and surveillance of V. cholerae.  相似文献   

5.
[目的]旨在对鸡源丁酸梭菌进行分离鉴定与安全性评估.[方法]利用厌氧培养方法对源自汶上芦花鸡与SPF鸡粪便样品进行丁酸梭菌的分离与纯化,挑选可疑菌落进行微生物质谱鉴定,进一步通过16S rRNA基因测序进行鉴定,16S rRNA测序结果与NCBI核苷酸数据库中丁酸梭菌的16S rRNA序列进行同源性分析;同时,进行所有...  相似文献   

6.
Bacillus thuringiensis (Bt) Berliner is a promising agent for microbial control of agriculturally and medically important insects. This study aimed at searching for Bt strains encoding Cry proteins that act more efficiently against fall armyworm. Thirty Bt strains were isolated from soil samples in Pernambuco State and evaluated through bioassays. Among these, strain I4A7 was the most efficient against the fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), and thus it was characterized by biochemical sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and molecular (polymerase chain reaction (PCR) and sequencing reaction) methods. The protein pattern of this strain on a SDS–PAGE was similar to that of B. thuringiensis israelensis (Bti). Moreover, I4A7 cry DNA sequence showed high identity (99–100%) to genes cry4Aa, 4Ba, 10Aa, 11Aa, cyt1Aa and cyt2B from Bti. The toxicity of the newly isolated Bti-like strain upon S. frugiperda should be considered as this strain might be used in combination with other Bt strains, such as B. thuringiensis var. kurstaki (Btk). Handling Editor: Helen Roy.  相似文献   

7.
Crane C  Wright E  Dixon RA  Wang ZY 《Planta》2006,223(6):1344-1354
Medicago truncatula, barrel medic, is a forage crop that has been developed into a model legume. The development of new transformation methods is important for functional genomic studies in this species. Based on Agrobacterium tumefaciens-mediated transformation of root explants, we developed an effective system for producing M. truncatula (genotype R108) transgenic plants. Among the four A. tumefaciens strains (AGL1, C58C1, EHA105 and LBA4404) tested, EHA105 and AGL1 were most effective in regenerating transgenics. Callus induction frequency from root explants was 69.8%, and plantlet/shoot regeneration frequency was 41.3% when EHA105 was used. Transgenic nature of the regenerated plants was confirmed by PCR and Southern hybridization analyses. Progeny analysis revealed stable Mendelian meiotic transmission of transgenes. Because M. truncatula is particularly useful for the study of root endosymbiotic associations, we further developed a plant regeneration system from A. rhizogenes-transformed hairy roots of M. truncatula. Fertile true transgenic plants were regenerated from the hairy roots, thus allowing the assessment of gene functions at the whole plant level. Segregation analysis revealed that the hairy root genes could be segregated out in the progenies. By coupling A. rhizogenes-mediated hairy root transformation and the regeneration system reported here, once potential genes of interest are identified, the transformed hairy roots carrying such genes could be directly regenerated into plants for more detailed characterization of the genes.  相似文献   

8.
The toxigenic potential of Bacillus species isolated from the traditional fermented condiment okpehe was determined; this is aimed at selection of non-toxigenic bacilli as starter cultures to bring about production of safe product. B. subtilis and B. cereus strains isolated from okpehe were evaluated for their possible possession of virulence characteristics. Fifty isolates were screened for their ability to produce diarrhoea enterotoxin by reversed passive latex agglutination (BCET-RPLA) test kit; the result showed that 40% of the B. cereus strains were toxigenic. The ability of the selected isolates to compete in situ and in vitro toxin production during the fermentation was also determined. The enterotoxin was not detected using BCET-RPLA kit in the spontaneously fermented samples of okpehe, but the toxin was detected in the okpehe samples fermented using B. cereus enterotoxin producer in mixed starter culture fermentation. The PCR amplification of virulence genes revealed that Bacillus cereus and B. licheniformis, a strain from the B. subtilis group, contained DNA sequences encoding the haemolysin BL (hblD) enterotoxin complex. The growth ability of B. cereus strains to high population during the fermentation and the presence of detectable diarroheagenic genes in B. cereus and B. licheniformis showed that strains carrying virulence characteristics cannot be totally ruled out in traditionally fermented okpehe.  相似文献   

9.
Microcystins are harmful hepatotoxins produced by many, but not all strains of the cyanobacterial genera Anabaena, Microcystis, Anabaena, Planktothrix, and Nostoc. Waterbodies have to be monitored for the mass development of toxic cyanobacteria; however, because of the close genetic relationship of microcystin-producing and non-producing strains within a genus, identification of microcystin-producers by morphological criteria is not possible. The genomes of microcystin-producing cells contain mcy genes coding for the microcystin synthetase complex. Based on the sequence information of mcy genes from Microcystis and Planktothrix, a primer pair for PCR amplification of a mcyA gene fragment was designed. PCR with this primer pair is a powerful means to identify microcystin-producing strains of the genera Anabaena, Microcystis, and Planktothrix. Moreover, subsequent RFLP analysis of the PCR products generated genus-specific fragments and allowed the genus of the toxin producer to be identified. The assay can be used with DNA from field samples.Abbreviations RFLP Restriction fragment length polymorphism - MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight spectrometry - HPLC High performance liquid chromatography  相似文献   

10.
11.
Bergkvist J  Selander E  Pavia H 《Oecologia》2008,156(1):147-154
The dinoflagellate Alexandrium minutum has previously been shown to produce paralytic shellfish toxins (PST) in response to waterborne cues from the copepod Acartia tonsa. In order to investigate if grazer-induced toxin production is a general or grazer-specific response of A. minutum to calanoid copepods, we exposed two strains of A. minutum to waterborne cues from three other species of calanoid copepods, Acartia clausi, Centropages typicus and Pseudocalanus sp. Both A. minutum strains responded to waterborne cues from Centropages and Acartia with significantly increased cell-specific toxicity. Waterborne cues from Centropages caused the strongest response in the A. minutum cells, with 5 to >20 times higher toxin concentrations compared to controls. In contrast, neither of the A. minutum strains responded with significantly increased toxicity to waterborne cues from Pseudocalanus. The absolute increase in PST content was proportional to the intrinsic toxicity of the different A. minutum strains that were used. The results show that grazer-induced PST production is a grazer-specific response in A. minutum, and its potential ecological importance will thus depend on the composition of the zooplankton community, as well as the intrinsic toxin-producing properties of the A. minutum population.  相似文献   

12.
Anatoxin-a-concentration in cells ofAnabaena- andAphanizomenon-strains and in their growth media were studied in the laboratory in batch cultures at different temperatures, light fluxes, orthophosphate and nitrate concentrations and with different nitrogen sources for growth. Toxin concentrations were detected by HPLC. Also, the growth of the toxicAnabaena-strains was compared to that of a non-toxic one. The non-toxicAnabaena was never found to produce anatoxin-a. The amount of toxin in the cells of the toxic strains was high, often exceeding 1% of their dry weight. High temperature decreased the amount of the toxin regardless of growth. Growth limiting low and growth inhibiting high light decreased the amount of the toxin in the cells ofAnabaena-strains. The highest light flux studied did not limit the growth or decrease the level of the toxin in the cells ofAphanizomenon. Growth in N-free medium (i.e. N2 fixation) showed that the cells contained more toxin than growth in N-rich medium. Orthophosphate concentration had no effect on toxin levels, although the lowest concentrations limited the growth of all strains studied. The toxic strains tolerated higher temperatures than the non-toxic one, but the non-toxic strain seemed to be more adjustable to high irradiance than the toxic ones. The yields (dry weight) of non-toxic and toxic strains differed significantly in different phosphate concentrations.  相似文献   

13.
Arsenic (As) is a very toxic metalloid to a great number of organisms. It is one of the most important global environmental pollutants. To resist the arsenate invasion, some microorganisms have developed or acquired genes that permit the cell to neutralize the toxic effects of arsenic through the exclusion of arsenic from the cells. In this work, two arsenic resistance genes, arsA and arsC, were identified in three strains of Rhizobium isolated from nodules of legumes that grew in contaminated soils with effluents from the chemical and fertilizer industry containing heavy-metals, in the industrial area of Estarreja, Portugal. The arsC gene was identified in strains of Sinorhizobium loti [DQ398936], Rhizobium leguminosarum [DQ398938] and Mesorhizobium loti [DQ398939]. This is the first time that arsenic resistance genes, namely arsC, have been identified in Rhizobium leguminosarum strains. The search for the arsA gene revealed that not all the strains with the arsenate reductase gene had a positive result for ArsA, the ATPase for the arsenite-translocating system. Only in Mesorhizobium loti was the arsA gene amplified [DQ398940]. The presence of an arsenate reductase in these strains and the identification of the arsA gene in Mesorhizobium loti, confirm the presence of an ars operon and consequently arsenate resistance.  相似文献   

14.
15.
The resurgence of enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. The southern Indian state of Kerala is endemic to cholera. A V. cholerae strain isolated from the stool sample of a patient in Piravam, Kerala, South India, was analysed. However, this case occurred at a time not associated with cholera outbreaks, leading to concern among the State health officials. We compared the virulence potential of the isolate with that of the standard or reference strains, that have been widely used as positive control. The isolate was identified as V. cholerae O1 biotype El Tor serotype Inaba. The resistance pattern of the isolate to common antibiotics was examined and it was found to be multi-drug resistant in nature. The strain was analysed for the presence of the CTX genetic element, which encodes genes for cholera toxin and other important regulatory genes. It was found to be positive for all the genes tested. In Kerala, most of the cholera outbreaks have been reported to be caused by V. cholerae O1 El Tor belonging to Ogawa serotype. Interestingly, the V. cholerae strain isolated from this case has been found to be of Inaba serotype, which is rarely reported.  相似文献   

16.
Summary Fifty-six percent of 93 strains ofBradyrhizobium japonicum andBradyrhizobium sp. (various hosts) from diverse geographical areas were found to produce a chlorosis-inducing toxin. Toxin production was common among bradyrhizobia originating from the USA, Africa, Central America, and South America. Toxin produced by West African strains was compared with rhizobitoxine by cation exchange chromatography, paper chromatography, and soybean (Glycine max (L.) Merr.) bioassay. The comparison suggested that the chlorosis-inducing toxin produced by West African bradyrhizobia is rhizobitoxine. Purified toxin from a West AfricanBradyrhizobium sp. (Vigna) strain inhibited the growth ofBacillus subtilis on minimal medium. The growth inhibition was reduced by addition of yeast-extract or casamino acids but not by any of 21 individual amino acids, including methionine. The same toxin did not inhibit the growth of 14 Bradyrhizobium strains, including eight strains that did not produce toxin. Mixed inoculum experiments revealed that a toxin-producing West African strain could not assist toxin non-producingB. japonicum strains in nodulating non-nodulating (rj1 rj1) soybeans.  相似文献   

17.
The cry toxin encoding plasmid pHT73 was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to six B. cereus group strains in three lepidopteran (Spodoptera exigua, Plutella xyllostella and Helicoverpa armigera) larvae by conjugation. The conjugation kinetics of the plasmid was precisely studied during the larval infection using a new protocol. The infections were performed with both vegetative and sporulated strains. However, larval death only occurred when infections were made with spore and toxin preparations. Likewise, spore germinations of both donor and recipient strains were only observed in killed larvae, 44–56 h post-infection. Accordingly, kinetics showed that gene transfer between B. thuringiensis strain KT0 and other B. cereus strains only took place in dead larvae among vegetatively growing bacteria. The conjugational transfer ratios varied among different strain combinations and different larvae. The highest transfer ratio reached 5.83 × 10−6 CFU/donor between the KT0 and the AW05R recipient in Helicoverpa armigera, and all transconjugants gained the ability to produce the insecticidal crystal. These results indicated that horizontal gene transfer among B. cereus group strains might play a key role for the acquisition of extra plasmids and evolution of these strains in toxin susceptible insect larvae.  相似文献   

18.
Ambient light and the circadian clock have been shown to be capable of acting either independently or in an interrelated fashion to regulate the expression of conidiation in the ascomycete fungusNeurospora crassa. Recently several molecular correlates of the circadian clock have been identified in the form of the morning-specific clock-controlled genesccg-1 andccg-2. In this paper we report studies on the regulation ofccg-1, an abundantly expressed gene displaying complex regulation. Consistent with an emerging consensus for clock-controlled genes and conidiation genes inNeurospora, we report thatccg-1 expression is induced by light, and show that this induction is independent of the direct effects of light on the circadian clock. Although circadian regulation of the gene is lost in strains lacking a functional clock, expression ofccg-1 is still not constitutive, but rather fluctuates in concert with changes in developmental potential seen in such strains. Light induction ofccg-1 requires the products of theNeurospora wc-1 andwc-2 genes, but surprisingly the requirement forwc-2 is suppressed in conditional mutants ofcot-1, a gene that encodes a cAMP-dependent protein kinase. These data provide insight into a complex regulatory web, involving at least circadian clock control, light control, metabolic control, and very probably developmental regulation, that governs the expression ofccg-1.  相似文献   

19.
艰难拟梭菌(Clostridioides difficile)是一种产芽孢的革兰氏阳性专性厌氧杆菌,是引起抗生素相关性腹泻的主要致病菌。艰难拟梭菌产生的毒素A和毒素B在其致病过程中发挥关键作用。毒素发挥毒性作用依赖其4个功能结构域:葡萄糖基转移酶结合域、半胱氨酸蛋白酶结合域、易位域和受体结合域。毒素的受体结合域识别并结合细胞表面受体,介导毒素内吞并形成内体。经过自体催化切割,毒素将真正的毒性片段——葡萄糖基转移酶结合域释放到胞浆中,葡萄糖基转移酶能够失活宿主肠上皮细胞内的GTP酶导致细胞骨架解聚和坏死,进而引起腹泻和伪膜性结肠炎等临床症状。艰难拟梭菌毒素产生受致病基因座内及基因座外许多调控因子的调节。tcdR和tcdC基因位于致病基因座内,对毒素基因的表达分别起促进和抑制作用,而基因座外如spo0A、codY等基因则通过抑制tcdR的表达从而间接影响毒素蛋白产生。本文将重点介绍艰难拟梭菌毒素的致病过程和影响毒素基因表达的分子调控机制,以期为开发针对毒素的治疗手段提供新思路。  相似文献   

20.
This study characterizes 28 Vibrio alginolyticus strains isolated from seawater from the Seacoast of Monastir (Khenis; Tunisia). V. alginolyticus were isolated using the TCBS modified agar plates and the biochemical activities were tested using RapID NF plus Strips. Proteases activities, hemolysis, antibiotics susceptibility, and adhesion to fish mucus and epithelial cell lines (Hep-2 and Caco-2) were also investigated. Eight Vibrio cholerae virulence genes (toxR, toxS, toxRS, toxT, ctxA, vpi, ace, zot) were investigated by PCR in genomes of V. alginolyticus strains. Most of the studied strains were β-haemolytic and produce many proteolytic enzymes. All isolates described here were resistant to several antibiotics tested. Six strains were able to adhere strongly to both Hep-2 and Caco-2 cell lines. The PCR investigation of V. cholerae genes showed a large distribution among the genomes of all V. alginolyticus strains. The toxR operon was found in 9 V. alginolyticus strains out of 28 studied. Only one strain was positive for the toxS and toxRS respectively. Five strains showed a positive amplification for the virulence pathogenic island (vpi), seven for the toxT, 3 for the ctxA and 9 for the Zonula occludens toxin (zot). The bay of Khenis harbors different genotypes of V. alginolyticus strains who inheritated several virulence genes from autochthones bacteria such as V. cholerae. These strains were able to produce several virulence enzymes and exhibit a high power to adhere to human epithelial cells and fish mucus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号