首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Immunoliposome sandwich assay for the detection of Escherichia coli O157:H7   总被引:5,自引:0,他引:5  
We describe the development of a field-portable colorimetric immunoassay for the detection of Escherichia coli O157:H7, using antibody-directed liposomes (immunoliposomes) encapsulating dye as an analytical reagent. Antibodies (anti-E. coli O157:H7) thiolated by 2-iminothiolane were coupled to malemide-tagged liposomes encapsulating the marker dye, sulforhodamine B. Transmission electron microscopy showed that the immunoliposomes bound only to the serotype without any cross-reactivity with tested negative controls. A wicking reagent containing immunoliposomes and the test sample and a plastic-backed nitrocellulose strip with a measurement zone were used in a sandwich (noncompetitive) assay format. During the capillary migration of the wicking reagent, E. coli, with surface-bound immunoliposomes, was captured at the measurement zone on which antibodies to E. coli O157:H7 were immobilized. The color density of the measurement zone was directly proportional to the amount of E. coli O157:H7 in the sample. The detection limit of the current assay with pure cultures of the serotype was ca. 10(4) colony-forming units (CFU)/mL. The assay, which does not need washing and incubation steps, can be completed in 8 min. These results demonstrate the feasibility of using dye-encapsulating immunoliposomes in microporous membranes for the rapid detection of molecules with multivalent antigenic sites.  相似文献   

2.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 10(1) to 10(5) cells ml(-1) in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 10(8) cells of a non-O157 strain of E. coli ml(-1). Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 10(2) to 10(5) E. coli O157 cells ml of concentrated water(-1). To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water(-1), 25 cells 100 ml of 100-fold concentrated water(-1), or 1 to 2 viable cells liter(-1) with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

3.
An immunoassay based on immunomagnetic separation and time-resolved fluorometry was developed for the detection of E. coli O157:H7 in apple cider. The time-resolved fluorescent immunoassay (TRFIA) uses a polyclonal antibody bound to immunomagnetic beads as the capture antibody and the same antibody labeled with europium as the detection antibody. Cell suspensions of 10(1) to 10(8) E. coli O157:H7 and K-12 organisms per ml were used to test the sensitivity and specificity of the assay. The sensitivity of the assay was 10(3) E. coli O157:H7 cells with no cross-reaction with K-12. Pure cultures of E. coli O157:H7 (10(1) to 10(5) CFU/ml) in apple cider could be detected within 6 h, including 4 h for incubation in modified EC broth with novobiocin and 2 h for the immunoassay. When apple cider was spiked with 1 to 10(3) CFU/ml of E. coli O157:H7 and 10(6) CFU/ml of K-12, our data show that the high level of K-12 in apple cider did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum were 10(2) and 10(1) CFU/ml after 4- and 6-h enrichment. The TRFIA provides a rapid and sensitive means of detecting E. coli O157:H7 in apple cider.  相似文献   

4.
The goal of this study was to develop a sensitive, specific, and accurate method for the selective detection of viable Escherichia coli O157:H7 cells in foods. A unique open reading frame (ORF), Z3276, was identified as a specific genetic marker for the detection of E. coli O157:H7. We developed a real-time PCR assay with primers and probe targeting ORF Z3276 and confirmed that this assay was sensitive and specific for E. coli O157:H7 strains (n = 298). Using this assay, we can detect amounts of genomic DNA of E. coli O157:H7 as low as a few CFU equivalents. Moreover, we have developed a new propidium monoazide (PMA)-real-time PCR protocol that allows for the clear differentiation of viable from dead cells. In addition, the protocol was adapted to a 96-well plate format for easy and consistent handling of a large number of samples. Amplification of DNA from PMA-treated dead cells was almost completely inhibited, in contrast to the virtually unaffected amplification of DNA from PMA-treated viable cells. With beef spiked simultaneously with 8 × 10(7) dead cells/g and 80 CFU viable cells/g, we were able to selectively detect viable E. coli O157:H7 cells with an 8-h enrichment. In conclusion, this PMA-real-time PCR assay offers a sensitive and specific means to selectively detect viable E. coli O157:H7 cells in spiked beef. It also has the potential for high-throughput selective detection of viable E. coli O157:H7 cells in other food matrices and, thus, will have an impact on the accurate microbiological and epidemiological monitoring of food safety and environmental sources.  相似文献   

5.
We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were 相似文献   

6.
周杨 《微生物学通报》2017,44(8):1996-2004
【目的】评价基于环介导恒温扩增技术(LAMP)的大肠杆菌O157:H7(Escherichia coli O157:H7)快速检测试剂盒的实效性。【方法】测定快速检测试剂盒的特异性、灵敏度、重复性、保质期以及运输稳定性,并与传统方法对比检测实际样品。【结果】大肠杆菌O157:H7标准菌株样品均检测为阳性,非大肠杆菌O157:H7标准菌株样品均检测为阴性,未发现有交叉反应;试剂盒最低检验限为29 CFU;该试剂盒的特异性、灵敏度及准确度与传统方法相比具有较高的一致性;试剂盒对高菌量目标菌和阴性菌样品的检测重复率均为100%,对低菌量目标菌样品的批间检测重复率为94%。试剂盒可在4°C保存9个月以上,并且可进行变温储存72 h以上。【结论】该试剂盒特异性好,灵敏度高,重复性好,储存方便,检测结果稳定、可靠,适用于对食品中大肠杆菌O157:H7的检测需求。  相似文献   

7.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

8.
【背景】大肠杆菌(Escherichia coli) O157:H7是导致肠出血性大肠杆菌食源性疾病暴发的主要血清型,免疫磁珠(Immunomagnetic beads,IMBS)在E. coli O157的检测中发挥着重要作用,而免疫磁珠的稳定性、特异性、广谱性等性能指标关系着在实际应用中的使用效果。【目的】制备高效、稳定且具有广谱性的免疫磁珠,联合分子检测技术如环介导恒温扩增 (Loop-mediated isothermal amplification,LAMP)技术、PCR等,提高目标菌的检出率。【方法】采用新型的磁珠活化剂MIX&GO制备E. coli O157免疫磁珠,并进行广谱性以及特异性检测;针对6种试剂牛血清白蛋白(Bovine serum albumin,BSA)、酪蛋白(Casein)、海藻糖(Trehalose)、聚乙烯吡咯烷酮(Polyvinyl pyrrolidone,PVP)、抗坏血酸(Vitamin C)和防腐剂ProClin 300,利用正交试验L18(37)优化免疫磁珠保存液组分;采用IMBS-LAMP、IMBS-PCR、IMBS-生化、菌液-LAMP、菌液-PCR、显色平板-生化鉴定6种方式对20份生猪肉样品进行检测。【结果】利用MIX&GO活化剂制备的免疫磁珠捕获率最高达到81.5%±1.3%;免疫磁珠保存液最优配方为:牛血清白蛋白15.0 g/L,酪蛋白10.0 g/L,海藻糖10.0 g/L,PVP 2.0 g/L,抗坏血酸5.0 g/L,ProClin 300 2.5 g/L,保存6个月后免疫磁珠捕获率为75.5%;在20份生猪肉样品的检测中,自制磁珠和商品化磁珠与LAMP联用均检出9例阳性样品;IMBS-LAMP在6种检测方式中具有最高的检测灵敏度,但检出的样品会因磁珠抗体的差异而有所不同。【结论】与商品化磁珠相比,实验制备的免疫磁珠具有良好的特异性和广谱性,免疫磁珠-LAMP联用提高了目标菌的检出率,是一种高灵敏度、具有应用前景的检测方法。  相似文献   

9.
There is a high demand for rapid, sensitive, and field-ready detection methods for Escherichia coli O157:H7, a highly infectious and potentially fatal food and water borne pathogen. In this study, E. coli O157:H7 cells are isolated via immunomagnetic separation (IMS) and labeled with biofunctionalized electroactive polyaniline (immuno-PANI). Labeled cell complexes are deposited onto a disposable screen-printed carbon electrode (SPCE) sensor and pulled to the electrode surface by an external magnetic field, to amplify the electrochemical signal generated by the polyaniline. Cyclic voltammetry is used to detect polyaniline and signal magnitude indicates the presence or absence of E. coli O157:H7. As few as 7CFU of E. coli O157:H7 (corresponding to an original concentration of 70 CFU/ml) were successfully detected on the SPCE sensor. The assay requires 70 min from sampling to detection, giving it a major advantage over standard culture methods in applications requiring high-throughput screening of samples and rapid results. The method can be performed with portable, handheld instrumentation and no biological modification of the sensor surface is required. Potential applications include field-based pathogen detection for food and water safety, environmental monitoring, healthcare, and biodefense.  相似文献   

10.
AIMS: To assess the detection and recovery rates achieved with commonly used cultural methods for the enumeration and recovery of Escherichia coli O157:H7 from minced beef and bovine hide. METHODS AND RESULTS: Minced beef and bovine hide were inoculated with varying concentrations (log(10) 1.58-2.58 CFU g(-1) and log(10) 2.42-4.49 CFU 100 cm(2) respectively) of E. coli O157:H7 and recovered using a direct plate method or an enrichment/immunomagnetic separation (IMS) method and then plated onto SMAC or SMAC-CT in both cases. The direct plate method detected the pathogen consistently from minced beef samples with an average recovery of 69.2-91.2%. From faecal material on the bovine hide the recovery of the pathogen ranged from 1.80 to 64.5% with fresh faeces depending on the inocula while from dried faeces on hide the results ranged from no recovery at all to 25.1%. Enrichment/IMS recovered E. coli O157:H7 at all inocula levels tested in minced beef while the pathogen was only detected consistently at an average inocula level of log(10) 2.73 CFU 100 cm(2) from fresh faeces and log(10) 4.49 CFU 100 cm(2) from dried faeces on bovine hide. CONCLUSIONS: The direct count enumeration method for E. coli O157:H7 underestimated the numbers of pathogens present. The enrichment/IMS procedure consistently detected the pathogen from minced beef but did not always detect E. coli O157:H7 from faeces on bovine hide. SIGNIFICANCE AND IMPACT OF THE STUDY: Overall this study highlights that any microbial data, used in either predictive microbiology or risk assessment, must take account of the sensitivity and associated performance of the methods employed, in order to make an accurate reflection of the true microbiology of the examined sample.  相似文献   

11.
In this study, enrichment procedures and two recovery methods, a membrane surface adhesion technique and an immunomagnetic separation (IMS), were compared for use in conjunction with a multiplex polymerase chain reaction (PCR) method with a view to describing a fast (24 h) and economical test for detection of Escherichia coli O157:H7 in meat samples. The study showed no significant difference between three different enrichment media (BHI, E. coli (E.C.) broth+novobiocin, modified tryptone soya broth (mTSB)+novobiocin) or two incubation temperatures (37 or 41.5 degrees C) for growth of E. coli O157:H7 in minced beef. Minced beef samples inoculated with E. coli O157:H7 at 40 cfu g(-1) were incubated at 37 degrees C for 16 h in E.C. broth+novobiocin reaching numbers of (log(10)7.82-8.70). E. coli O157:H7 were recovered by attachment to polycarbonate membranes immersed in the enriched cultures for 15 min or by immunomagnetic separation. Subsequent treatment of recovered membranes or IMS beads with lysis buffer and phenol/chloroform/isoamyl alcohol was used to extract the DNA from the extracted E. coli O157:H7 cells. The results show when E. coli O157:H7 was present at high levels in the enriched meat sample (log(10)9.6-7.5 cfu ml(-1); >16-h enrichment), the membrane and IMS techniques recovered similar levels of the pathogen and the microorganism was detectable by PCR using both methods. At lower levels of E. coli O157:H7 (log(10)6.4), only the IMS method could recover the pathogen but at levels below this neither method could recover sufficient numbers of the pathogens to allow detection. The conclusion of the study is that with sufficient enrichment time (16 h) the membrane surface adhesion membrane extraction method used in combination with multiplex PCR has the potential for a rapid and economical detection method.  相似文献   

12.
目的:对大肠杆菌的一种重要的变种--肠出血性大肠杆菌O157-H7的几种检测方法进行比较研究.方法:以自动免疫磁珠收集系统(AIMS)、自动酶标免疫测试系统(VIDAS)与传统常规的分离方法进行对比分析.结果:运用自动免疫磁珠收集系统(AIMS)方法对80份可能含有肠出血性大肠杆菌O157-H7的实样进行检测,检出份数为6份,检出率为7.5%,而且在一周之内可以全部对上述检出实样进行鉴定.AIMS法能够检出浓度在10cfu/mL模拟实样之中的肠出血性大肠杆菌O157-H7,然后将此法与CHROMagar 0157琼脂板相结合,其效果则更为明显.而自动酶标免疫测试系统(VIDAS)与传统与的分离方法则检测的效果不佳,检出率为0.自动免疫磁珠收集系统(AIMS)检测方法与自动酶标免疫测试系统(VIDAS)、传统与的分离方法在检出率方面存在显著的统计学差异,P<0.01.结论:运用自动免疫磁珠收集系统(AIMS)结合CHROMagar 0157琼脂板对出血性大肠杆菌O157-H7进行检测,检出率较高、灵敏度较高且快速便捷,可以用于O157-H7外环境检测与食品污染源的实际调查之中,应该对其加以广泛地推广并应用.  相似文献   

13.
A protocol for the quantitative detection of Escherichia coli O157 in raw and concentrated surface waters using immunomagnetic electrochemiluminescence (IM-ECL) was developed and optimized. Three antibody sandwich formats were tested: commercial anti-O157:H7 IM beads, IM beads made in-house with a polyclonal anti-O157:H7 immunoglobulin G (IgG), or IM beads made in-house with a monoclonal anti-O157:H7 IgG coupled with a polyclonal anti-O157:H7 IgG to which an electrochemiluminescent label (TAG) was attached. The monoclonal IM bead-polyclonal TAG format was chosen for optimization because it gave lower background levels and linear regression slopes of ca. 1.0, indicative of a constant ECL signal per cell. The dynamic range was ca. 101 to 105 cells ml−1 in phosphate-buffered saline and in raw water samples. The monoclonal IM beads selectively captured E. coli O157 cells in the presence of ca. 108 cells of a non-O157 strain of E. coli ml−1. Background ECL signals from concentrated (100-fold) water samples were substantially higher and more variable than raw water samples. The background signal was partially eliminated by the addition of polyvinylpolypyrrolidone. Successive cell capture incubations, termed sequential bead capture (SBC), were optimized for establishing baseline ECL values for individual water samples. The linear dynamic range with SBC was ca. 102 to 105 E. coli O157 cells ml of concentrated water−1. To validate the protocol, 10-liter surface water samples were spiked with ca. 5,000 E. coli O157 (Odwalla) cells and concentrated by vortex filtration, and 1- or 3-ml aliquots were analyzed by IM-ECL. Differential ECL signals (SBC) from 1- and 3-ml samples were statistically significant and were generally consistent with standard curves for these cell concentrations. Enrichments were conducted with aliquots of spiked raw water and concentrated water using EC broth and minimal lactose broth (MLB). All tubes with concentrated water became turbid and gave a positive ECL response for E. coli O157 (>10,000 ECL units); MLB gave a somewhat higher detection rate with spiked raw water. The potential sensitivity of the IM-ECL assay is ca. 25 E. coli O157 cells ml of raw water−1, 25 cells 100 ml of 100-fold concentrated water−1, or 1 to 2 viable cells liter−1 with concentration and enrichment. The IM-ECL assay appears suitable for routine analysis and screening of water samples.  相似文献   

14.
AIMS: To apply the real-time Polymerase chain reaction (PCR) method to detect and quantify Escherichia coli O157:H7 in soil, manure, faeces and dairy waste washwater. METHODS AND RESULTS: Soil samples were spiked with E. coli O157:H7 and subjected to a single enrichment step prior to multiplex PCR. Other environmental samples suspected of harbouring E.coli O157:H7 were also analysed. The sensitivity of the primers was confirmed with DNA from E.coli O157:H7 strain 3081 spiked into soil by multiplex PCR assay. A linear relationship was measured between the fluorescence threshold cycle (C T ) value and colony counts (CFU ml(-1)) in spiked soil and other environmental samples. The detection limit for E.coli O157:H7 in the real-time PCR assay was 3.5 x 10(3) CFU ml(-1) in pure culture and 2.6 x 10(4) CFU g(-1) in the environmental samples. Use of a 16-h enrichment step for spiked samples enabled detection of <10 CFU g(-1) soil. E. coli colony counts as determined by the real-time PCR assay, were in the range of 2.0 x 10(2) to 6.0 x 10(5) CFU PCR (-1) in manure, faeces and waste washwater. CONCLUSIONS: The real-time PCR-based assay enabled sensitive and rapid quantification of E. coli O157:H7 in soil and other environmental samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to quantitatively determine cell counts of E.coli O157:H7 in large numbers of environmental samples, represents considerable advancement in the area of pathogen quantification for risk assessment and transport studies.  相似文献   

15.
A solid phase fluorescence-based immunoassay was developed for the detection of Escherichia coli O157:H7 using an antigen down competition format. A soft glass capillary tube served as the solid support, to which heat-killed E. coli O157:H7 were adsorbed. Polyclonal anti- E. coli O157:H7 antibody, conjugated with biotin, was used and the bound antigen-antibody complex was detected using avidin molecules labelled with Cy5, a fluorescent cyanine dye. Any E. coli O157:H7 in the sample would compete with the formation of this complex, reducing fluorescence. This assay was tested for sensitivity with spiked ground beef and apple cider samples. The minimum detectable number of cells present in the initial inoculum was calculated to be approximately 1 colony-forming unit (cfu) per 10g of ground beef when samples were enriched in modified EC broth for 7 h at 37°C. The minimum detectable number of cells for the apple cider samples was calculated to be ∼0.5 cfu ml-1 The E. coli cells in the cider samples were captured with immunomagnetic beads, incubated for 7 h in the enrichment broth, and detected with the solid phase fluorescence immunoassay.  相似文献   

16.
Escherichia coli O157:H7, a major foodborne pathogen, has been associated with numerous cases of foodborne illnesses. Rapid methods have been developed for the screening of this pathogen in foods in order to circumvent timely plate culture techniques. Unfortunately, many rapid methods are presumptive and do not claim to confirm the presence of E. coli O157:H7. The previously developed method, enzyme-linked immunomagnetic chemiluminescence (ELIMCL), has been improved upon to allow for fewer incidences of false positives when used to detect E. coli O157:H7 in the presence of mixed cultures. The key feature of this assay is that it combines the highly selective synergism of both anti-O157 and anti-H7 antibodies in the sandwich immunoassay format. This work presents application of a newly semi-automated version of ELIMCL to the detection of E. coli O157:H7 in pristine buffered saline yielding detection limits of approximately 1 x 10(5) to 1 x 10(6) of live cells/mL. ELIMCL was further demonstrated to detect E. coli O157:H7 inoculated into artificially contaminated ground beef at ca. 400 CFU/g after a 5 h enrichment and about 1.5 h assay time for a total detection time of about 6.5 h. Finally, ELIMCL was compared with USFDA's Bacteriological Analytical Manual method for E. coli O157:H7 in a double-blind study. Using McNemar's treatment, the two methods were determined to be statistically similar for the detection of E. coli O157:H7 in ground beef inoculated with mixed cultures of select bacteria.  相似文献   

17.
The distribution of Escherichia coli O157 in bovine feces was examined by testing multiple samples from fecal pats and determining the density of E. coli O157 in immunomagnetic separation (IMS)-positive fecal samples. The density of E. coli O157 in bovine feces was highly variable, differing by as much as 76,800 CFU g(-1) between samples from the same fecal pat. The density in most positive samples was <100 CFU g(-1), the limit of reliable detection by IMS. Testing only one 1-g sample of feces per pat with IMS may result in a sensitivity of detection as low as 20 to 50%. It is therefore probable that most surveys have greatly underestimated the prevalence of E. coli O157 shedding in cattle and the proportion of farms with shedding cattle. The sensitivity of the detection of E. coli O157 in bovine feces can be as much as doubled by testing two 1-g samples per pat rather than one 1-g sample.  相似文献   

18.
The purpose of this study was to apply our rapid, integrated double enrichment 5' nuclease real-time polymerase chain reaction assay for the detection of Escherichia coli O157:H7 and evaluate its efficacy. The assay targeted ground beef, an important vehicle in disease epidemiology. The assay reliably determined in 8 h the presence of E. coli O157:H7 in ground beef at the level of 1 colony-forming unit (CFU)/g. The sensitivity and specificity of the assay were compared with that of standard enrichment diagnostic techniques. A correlation of 100% in detection was achieved to the limit of 1 CFU/g. This assay can be used as a rapid, automatic process for identification of E. coli O157:H7 in ground beef or can be integrated with standard culture procedures, resulting in considerable cost and time savings.  相似文献   

19.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

20.
Rapid, direct methods are needed to assess active bacterial populations in water and foods. Our objective was to determine the efficiency of bacterial detection by immunomagnetic separation (IMS) and the compatibility of IMS with cyanoditolyl tetrazolium chloride (CTC) incubation to determine respiratory activity, using the pathogen Escherichia coli O157:H7. Counterstaining with a specific fluorescein-conjugated anti-O157 antibody (FAb) following CTC incubation was used to allow confirmation and visualization of bacteria by epifluorescence microscopy. Broth-grown E. coli O157:H7 was used to inoculate fresh ground beef (<17% fat), sterile 0.1% peptone, or water. Inoculated meat was diluted and homogenized in a stomacher and then incubated with paramagnetic beads coated with anti-O157 specific antibody. After IMS, cells with magnetic beads attached were stained with CTC and then an anti-O157 antibody-fluorescein isothiocyanate conjugate and filtered for microscopic enumeration or solid-phase laser cytometry. Enumeration by laser scanning permitted detection of ca. 10 CFU/g of ground beef or <10 CFU/ml of liquid sample. With inoculated meat, the regression results for log-transformed respiring FAb-positive counts of cells recovered on beads versus sorbitol-negative plate counts in the inoculum were as follows: intercept = 1.06, slope = 0.89, and r2 = 0. 95 (n = 13). The corresponding results for inoculated peptone were as follows: intercept = 0.67, slope = 0.88, and r2 = 0.98 (n = 24). Recovery of target bacteria on beads by the IMS-CTC-FAb method, compared with recovery by sorbitol MacConkey agar plating, yielded greater numbers (beef, 6.0 times; peptone, 3.0 times; water, 2.4 times). Thus, within 5 to 7 h, the IMS-CTC-FAb method detected greater numbers of E. coli O157 cells than were detected by plating. The results show that the IMS-CTC-FAb technique with enumeration by either fluorescence microscopy or solid-phase laser scanning cytometry gave results that compared favorably with plating following IMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号