首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
While developmental consequences of parental investment on species-typical social behaviors has been extensively characterized in same-sex parent-offspring interactions, the impact of opposite-sex relationships is less clear. In the bi-parental California mouse (Peromyscus californicus), paternal retrieval behavior induces territorial aggression and the expression of arginine vasopressin (AVP) in adult male offspring. Although similar patterns of territorially emerge among females, the sexually dimorphic AVP system has not been considered since it is generally thought to regulate male-typical behavior. However, we recently demonstrated that male and female P. californicus offspring experience increases in plasma testosterone following paternal retrieval. Since AVP expression is androgen-dependent during development, we postulate that increases in AVP expression may accompany territoriality in female, as well as male offspring. To explore this aim, adult P. californicus offspring that received either high or low levels of paternal care (retrievals) during early development were tested for territoriality and immunohistochemical analysis of AVP within the bed nucleus of the stria terminalis (BNST), paraventricular nucleus (PVN), and supraoptic nucleus (SON). Consistent with previous studies, high care offspring were more aggressive than low care offspring. Moreover, high care offspring had significantly more AVP immunoreactive (AVP-ir) cells within the BNST than low care offspring. This pattern was observed within female as well as male offspring, suggesting an equally salient role for paternal care on female offspring physiology. Regardless of early social experience, sex differences in AVP persisted in the BNST, with males having greater expression than females.  相似文献   

2.
The bed nucleus of the stria terminalis (BNST) and centromedial amygdala share many neuroanatomical and neurochemical characteristics, suggesting similarities in their development. Here we compare the neurogenesis of a group of cells for which already several common characteristics have been documented, that is, the sexually dimorphic arginine vasopressin-immunoreactive (AVP-ir) cells of the BNST and amygdala. To determine when these cells are born, pregnant rats received intraperitoneal injections of the thymidine analogue bromo-2-deoxy-5-uridine (BrdU) on one of nine embryonic days, E10 to E18; E1 being the day that a copulatory plug was found. At 3 months of age, the offsprings of these females were killed and their brains stained immunocytochemically for BrdU and AVP. Most AVP-ir cells were labeled with BrdU by injections on E12 and E13. Although BrdU labeling of AVP-ir cells did not differ between the BNST and amygdala, it differed between males and females. From E12 to E13, the percentage of BrdU-labeled AVP-ir cells decreased more in males than in females. AVP-ir cells appeared to be born earlier than most other cells in the same area, the majority of which were labeled with BrdU by injections on E14, E15, and E16. The similarities in the birthdates of AVP-ir cells in the BNST and amygdala may help to explain why these cells take on so many similar characteristics. The sex difference in birthdates of AVP-ir cells may help to explain which cellular processes underlie the sexual differentiation of these cells. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
J Yanai 《Acta anatomica》1979,104(3):335-339
45 male and female Wistar rats were given a single injection of 3H-thymidine (10 mu Ci/g body weight) on day 1, 7, 14 or 21. All animals survived until 60 days of age when they were perfused with 10% neutral formalin and the brains were removed and prepared for autoradiography. The sagittal section of the cortex (L980 micron) was 6.8% larger in the males (p less than 0.05) but the packing density of the cortical cells was 5.9% higher in the females (p less than 0.01), thus bringing the total number of cells to the male levels. The diameter of the female cortical cells was 3.8% smaller than those of the males (p less than 0.05). The greatest difference was among the smaller cells (3-9 micron). The rate of postnatal acquisition of cortical cells was indicated by the number of radioactive-labelled cells. Males had more labeled cells after each injection; it was most pronounced (32% difference) on day 7 (p less than 0.05). This may reflect a delayed acquisition rate of cells formed before birth, since more cells could be labeled by the postnatal injection.  相似文献   

4.
Vasopressin (AVP) immunoreactivity in cells and projections of the bed nucleus of the stria terminalis (BST) and medial amygdaloid nucleus (MA) depends on gonadal steroids. In addition, the AVP projections from the BST show denser fiber staining in males than in females. To study whether these differences depend on different hormone levels in adulthood, male and female rats were gonadectomized and similarly treated with testosterone for 4 weeks prior to sacrifice. Immunocytochemistry showed that males had significantly more AVP-immunoreactive (AVP-IR) cells in the BST and significantly denser AVP-IR projections from this nucleus to the lateral septum, lateral habenular nucleus, and periaqueductal central gray than did females. The number of AVP-IR cells in the MA nucleus was not statistically different, but denser AVP-IR fiber networks were found in the MA and ventral hippocampus, which receives its input from the MA. No differences were found in the anteroventral portion of the periventricular nucleus and the dorsomedial nucleus of the hypothalamus that receive their AVP innervation from the suprachiasmatic nucleus. These results indicate that the sex difference in the steroid-sensitive AVP pathways depends on other factors besides circulating hormone levels in adulthood.  相似文献   

5.
目的:观察不同性别大鼠旋转前后不同时间点血浆和垂体精氨酸加压素(AVP)的含量以及垂体AvP—V1b受体阳性神经元数目和受体表达量,探讨AVP与运动病性别差异间的联系,为进一步认识运动病的发病机制提供实验依据。方法:采用条件性厌食症作为运动病模型。98只SD大鼠,雌雄各半,分别用放射免疫分析法、免疫组化及Western—blot法测定血浆、垂体AVP含量和垂体V1b受体表达水平。结果:旋转刺激后雌性大鼠糖精水(0.15%)饮用量的减少程度高于雄性大鼠。雌性大鼠血浆AVP含量在基础状态下高于雄性大鼠,旋转刺激后下降,而雄性大鼠无显著性变化。雌性大鼠垂体AVP含量在基础状态下也高于雄性大鼠,旋转刺激后8h下降。24h降低有显著性;雄性大鼠旋转后8h垂体AVP含量较旋转前明显下降,但降幅不及雌性大鼠,旋转后24h已近恢复。与应激反应密切相关的垂体V1b受体表达为阳性的神经元数目及V1b受体表达水平,在基础状态下,雌性大鼠显著高于雄性;旋转刺激后,雌性大鼠V1b受体表达为阳性的神经元数目和表达水平均明显降低,而雄性大鼠则无显著性改变。结论:运动病诱发刺激后,雌雄性大鼠血浆和垂体中AVP含量及垂体V1b受体表达均有差异,提示AVP的内分泌状态与运动病敏感性性别差异可能有某种关联。  相似文献   

6.
Sex differences may play a significant role in determining the risk of hypertension. Bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are involved in the tonic regulation of arterial pressure and participate in the central mechanisms of hypertension. Angiotensin II (ANG II) acting on angiotensin type 1 (AT(1)) receptors in RVLM neurons is implicated in the development of hypertension by activating NADPH oxidase and producing reactive oxygen species (ROS). Therefore, we analyzed RVLM bulbospinal neurons to determine whether there are sex differences in: 1) immunolabeling for AT(1) receptors and the key NADPH oxidase subunit p47 using dual-label immunoelectron microscopy, and 2) the effects of ANG II on ROS production and Ca(2+) currents using, respectively, hydroethidine fluoromicrography and patch-clamping. In tyrosine hydroxylase-positive RVLM neurons, female rats displayed significantly more AT(1) receptor immunoreactivity and less p47 immunoreactivity than male rats (P < 0.05). Although ANG II (100 nM) induced comparable ROS production in dissociated RVLM bulbospinal neurons of female and male rats (P > 0.05), an effect mediated by AT(1) receptors and NADPH oxidase, it triggered significantly larger dihydropyridine-sensitive long-lasting (L-type) Ca(2+) currents in female RVLM neurons (P < 0.05). These observations suggest that an increase in AT(1) receptors in female RVLM neurons is counterbalanced by a reduction in p47 levels, such that ANG II-induced ROS production does not differ between females and males. Since the Ca(2+) current activator Bay K 8644 induced larger Ca(2+) currents in females than in male RVLM neurons, increased ANG II-induced L-type Ca(2+) currents in females may result from sex differences in calcium channel densities or dynamics.  相似文献   

7.
Estrogens are produced by the aromatization of androgens. These steroids exert their actions after binding to their receptors. Past studies have shown that estrogen receptors (ER) and aromatase enzyme (AROM) reside in many of the same brain regions. Few studies, however, have examined the neural co-localization of these important components involved in estrogen-activated behaviors. In the present study we examined the co-localization of ER and AROM immunoreactive (ir) neurons in musk shrew (Suncus murinus) brains. Data were collected from a representative section from three neural regions, the bed nucleus of the stria terminalis (BNST), medial preoptic area (mPOA), and ventromedial nucleus of the hypothalamus (VMN). Here we report a sex difference in the number of ER-ir neurons from the analyzed section of the mPOA and BNST. Females have more ER-ir neurons in the mPOA and males have more in the BNST. In the sections we examined, males tended to have more aromatase containing neurons than females. Although there were no significant differences in the numbers of double-labeled cells, the VMN contains the greatest percentage of these cells in both males and females; followed by the mPOA and the BNST. In addition, in the mPOA of both sexes, a distinct nucleus of aromatase containing neurons which was devoid of ER immunoreactivity was noted. Area measurements of the AROM-ir nucleus showed that it was significantly larger in males than in females. Taken together, these data suggest that there is not extensive cellular co-localization of estrogen receptors and aromatase enzyme in the musk shrew brain. However, the presence of other genomic forms of ER (membrane and/or ERβ) in AROM containing neurons has not been ruled out by this study. Thus, we hypothesize that estrogens produced in brain affect behavior by binding to ER in neurons other than those that contain aromatase enzyme.  相似文献   

8.
本研究通过对雌雄子午沙鼠进行新物体识别和社会认知实验,运用免疫组化方法检测其相关脑区合成催产素(OT)、加压素(AVP)和多巴胺(DA)能的神经元数量,采用酶联免疫试验(ELISA)方法检测了其血清中OT、AVP的水平,探究了雌雄子午沙鼠的两性认知差异及其神经内分泌水平的差异。结果表明,雌雄子午沙鼠对新物体的探究时间均要显著高于旧物体,雌雄子午沙鼠的辨别指数无显著差异(P>0.05);雄性子午沙鼠随着探究次数的增加对重复刺激鼠a的探究时间不断减少,对陌生刺激鼠b的探究时间显著高于刺激鼠a(P<0.05);雌性子午沙鼠没有此趋势。雄性子午沙鼠OT能神经元数量在下丘脑室旁核(PVN)和视上核(SON)均要显著少于雌性(P<0.05);雄性个体DA能神经元数量在黑质显著高于雌性(P<0.01);然而雄性个体DA能神经元数量在腹侧被盖区显著少于雌性(P<0.01);雌雄子午沙鼠血清OT、AVP水平均无显著差异。综上所述,雌雄子午沙鼠对新物体的识别能力无显著差异,然而雄性子午沙鼠的社会认知能力强于雌性。在神经内分泌水平上,雌雄子午沙鼠PVN和SON中OT能神经元数量、黑质和腹侧背盖区的DA能神经元数量均呈现出了两性差异。  相似文献   

9.
《Epigenetics》2013,8(3):230-238
Several neurodevelopmental disorders are marked by atypical Methyl-CpG-binding protein 2 (MeCP2) expression or function; however, the role of MeCP2 is complex and not entirely clear. Interestingly, there are sex differences in some of these disorders, and it appears that MeCP2 has sex-specific roles during development. Specifically, recent data indicate that a transient reduction in MeCP2 within developing amygdala reduces juvenile social play behavior in males to female-typical levels. These data suggest that MeCP2 within the amygdala is involved in programming lasting sex differences in social behavior. In the present study, we infused MeCP2 or control siRNA into the amygdala of male and female rats during the first three days of postnatal life in order to assess the impact of a transient reduction in MeCP2 on arginine vasopressin (AVP), a neural marker that is expressed differentially between males and females and is linked to a number of social behaviors. The expression of AVP, as well as several other genes, was measured in two-week old and adult animals. Two-week old males expressed more AVP and galanin mRNA in the amygdala than females, and a transient reduction in MeCP2 eliminated this sex difference by reducing the expression of both gene products in males. A transient reduction in MeCP2 also decreased androgen receptor (AR) mRNA in two-week old males. In adulthood, control males had more AVP-immunoreactive (AVP-ir) cells than females in the centromedial amygdala (CMA), bed nucleus of the stria terminalis (BST) and in the fibers that project from these cells to the lateral septum (LS). A transient reduction in MeCP2 eliminated this sex difference. Interestingly, there were no lasting differences in galanin or AR levels in adulthood. Reducing MeCP2 levels during development did not alter estrogen receptorα, neurofilament or Foxg1. We conclude that a transient reduction in MeCP2 expression in the developing male amygdala has a transient impact on galanin and AR expression but a lasting impact on AVP expression, highlighting the importance of MeCP2 in organizing sex differences in the amygdala.  相似文献   

10.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone-filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system.  相似文献   

11.
Two experiments were carried out to test whether cells which are born in adulthood and migrate to the olfactory bulb of adult male golden hamsters are activated during sexual behaviors, to determine the time course over which such responsiveness appears, and to ask whether activation is specific to sexual cues. In the first experiment, adult male hamsters were injected with 5'-bromodeoxyuridine (BrdU, 50mg/kg b.w.) 3 times over the course of one week in order to mark dividing cells. Ten days, three weeks, or seven weeks after the first BrdU injection, the animals were allowed to mate with an estrous female for half an hour before being sacrificed. Confocal analysis of fluorescent immunostaining of BrdU and c-Fos first revealed dual labeled cells in the olfactory bulb 3 weeks after injection of the thymidine analog. In order to determine whether the activation of these newly generated cells is specific to sexual cues, we next compared the incidence of c-Fos expression in newborn (BrdU positive) cells among male hamsters exposed to an estrous female, an aggressive male, a cotton swab containing vaginal secretion from an estrous female hamster (FHVS), a cotton swab containing peppermint, or a cotton swab containing distilled water. In the mitral and glomerular layers of the accessory olfactory bulb, animals exposed to an estrous female had significantly more double labeled cells than did those given other treatments (p < 0.01). In the mitral layer of the main bulb, animals exposed to an estrous female had a significantly higher percentage of double labeled cells than those of other groups, except those exposed to an aggressive male (p < 0.05). No double labeled cells were seen in medial preoptic area (MPOA), medial nucleus of the amygdala (Me), the bed nucleus of the stria terminalis (BNST), or the hypothalamus. Our results indicate that cells born in adulthood are more responsive to cues arising from estrous females than other stimuli, and thus may participate in sociosexual behaviors.  相似文献   

12.
In many rodent species, including Syrian hamsters, the expression of appropriate social behavior depends critically on the perception and identification of conspecific odors. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (Me), posterior bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Although it is well-known that Me, BNST, and MPOA are densely interconnected and each uniquely modulates odor-guided social behaviors, the degree to which conspecific odor information and steroid hormone cues are directly relayed between these nuclei is unknown. To answer this question, we injected the retrograde tracer, cholera toxin B (CTB), into the BNST or MPOA of male subjects and identified whether retrogradely-labeled cells in Me and BNST 1) expressed immediate early genes (IEGs) following exposure to male and/or female odors or 2) expressed androgen receptor (AR). Although few retrogradely-labeled cells co-localized with IEGs, a higher percentage of BNST- and MPOA-projecting cells in the posterior Me (MeP) expressed IEGs in response to female odors than to male odors. The percentage of retrogradely-labeled cells that expressed IEGs did not, however, differ between and female and male odor-exposed groups in the anterior Me (MeA), posterointermediate BNST (BNSTpi), or posteromedial BNST (BNSTpm). Many retrogradely-labeled cells co-localized with AR, and a higher percentage of retrogradely-labeled MeP and BNSTpm cells expressed AR than retrogradely-labeled MeA and BNSTpi cells, respectively. Together, these data demonstrate that Me, BNST, and MPOA interact as a functional circuit to process sex-specific odor cues and hormone information in male Syrian hamsters.  相似文献   

13.
Several neurodevelopmental disorders are marked by atypical Methyl-CpG-binding protein 2 (MeCP2) expression or function; however, the role of MeCP2 is complex and not entirely clear. Interestingly, there are sex differences in some of these disorders, and it appears that MeCP2 has sex-specific roles during development. Specifically, recent data indicate that a transient reduction in MeCP2 within developing amygdala reduces juvenile social play behavior in males to female-typical levels. These data suggest that MeCP2 within the amygdala is involved in programming lasting sex differences in social behavior. In the present study, we infused MeCP2 or control siRNA into the amygdala of male and female rats during the first three days of postnatal life in order to assess the impact of a transient reduction in MeCP2 on arginine vasopressin (AVP), a neural marker that is expressed differentially between males and females and is linked to a number of social behaviors. The expression of AVP, as well as several other genes, was measured in two-week old and adult animals. Two-week old males expressed more AVP and galanin mRNA in the amygdala than females, and a transient reduction in MeCP2 eliminated this sex difference by reducing the expression of both gene products in males. A transient reduction in MeCP2 also decreased androgen receptor (AR) mRNA in two-week old males. In adulthood, control males had more AVP-immunoreactive (AVP-ir) cells than females in the centromedial amygdala (CMA), bed nucleus of the striaterminalis (BST) and in the fibers that project from these cells to the lateral septum (LS). A transient reduction in MeCP2 eliminated this sex difference. Interestingly, there were no lasting differences in galanin or AR levels in adulthood. Reducing MeCP2 levels during development did not alter estrogen receptorα, neurofilament or Foxg1. We conclude that a transient reduction in MeCP2 expression in the developing male amygdala has a transient impact on galanin and AR expression but a lasting impact on AVP expression, highlighting the importance of MeCP2 in organizing sex differences in the amygdala.Key words: epigenetics, MeCP2, amygdala, sexual differentiation, development, arginine vasopressin, galanin  相似文献   

14.
Male rats possess twice as many cells that express arginine-vasopressin (AVP) in the bed nucleus of the stria terminalis (BST) and centromedial amygdala (CMA) as do females. This sex difference may arise from sex differences in the induction of AVP expression in galanin (GAL)-expressing cells, which themselves do not differ in number between males and females. To test whether AVP expression could arise from a single pool of galaninergic cells, we determined whether the cell birth profile of GAL-immunoreactive (ir) cells was similar to that of AVP-ir cells. Dams were injected with the cell birth marker bromodeoxyuridine (BrdU) on one of seven gestational dates, ranging from embryonic day 11 (E11) to E17. The resulting offspring were sacrificed at 3 months of age. Processing their brains for the presence of either GAL and BrdU, or AVP and BrdU immunoreactivity revealed that in both the BST and CMA, the majority of GAL-ir and AVP-ir cells were labeled with BrdU on E12 and E13. In contrast, most other cells in the same region were labeled on E14 and E15. The similarity in the timing of cell birth of the GAL-ir and AVP-ir cells is consistent with the idea that GAL-ir cells in the BST/CMA constitute a single pool of cells that may be induced to express AVP during development.  相似文献   

15.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone‐filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 502–510, 2003  相似文献   

16.
In order to elucidate the existence of gender-related variations in both growth hormone (GH) release and the activity of somatotropic cells following bilateral adrenalectomy, a morphometric analysis was performed on GH-immunoreactive cells from adult male and female rats after bilateral adrenalectomy, correlating the findings with the serum levels of the hormone. The results obtained were compared to those found in untreated animals. Bilateral adrenalectomy was seen to induce a decrease in serum GH levels (p less than 0.01) in male rats; this was accompanied by a significant decrease in cellular area (p less than 0.01), cytoplasmic area (p less than 0.05) and nuclear area (p less than 0.01) and by a decrease in the cytoplasmic immunoreaction intensity of GH cells. By contrast, the above-mentioned changes did not appear in the female rats. These results suggest that the action of glucocorticoids on the synthesis and release of GH depends on the sex of the animal.  相似文献   

17.
In developing rats, sex differences in the number of apoptotic cells are found in the central division of the medial preoptic nucleus (MPNc), which is a significant component of the sexually dimorphic nucleus of the preoptic area, and in the anteroventral periventricular nucleus (AVPV). Specifically, male rats have more apoptotic cells in the developing AVPV, whereas females have more apoptotic cells in the developing MPNc. To determine the mechanisms for the sex differences in apoptosis in these nuclei, we compared the expression of the Bcl-2 family members and active caspase-3 in postnatal female and male rats. Western blot analyses for the Bcl-2 family proteins were performed using preoptic tissues isolated from the brain on postnatal day (PD) 1 (day of birth) or on PD8. In the AVPV-containing tissues of PD1 rats, there were significant sex differences in the level of Bcl-2 (female > male) and Bax (female < male) proteins, but not of Bcl-xL or Bad proteins. In the MPNc-containing tissues of PD8 rats, there were significant sex differences in the protein levels for Bcl-2 (female < male), Bax (female > male), and Bad (female < male), but not for Bcl-xL. Immunohistochemical analyses showed significant sex differences in the number of active caspase-3-immunoreactive cells in the AVPV on PD1 (female < male) and in the MPNc on PD8 (female > male). We further found that active caspase-3-immunoreactive cells of the AVPV and MPNc were immunoreactive for NeuN, a neuronal marker. These results suggest that there are sex differences in the induction of apoptosis via the mitochondrial pathway during development of the AVPV and MPNc.  相似文献   

18.
In developing rats, sex differences in the number of apoptotic cells are found in the central division of the medial preoptic nucleus (MPNc), which is a significant component of the sexually dimorphic nucleus of the preoptic area, and in the anteroventral periventricular nucleus (AVPV). Specifically, male rats have more apoptotic cells in the developing AVPV, whereas females have more apoptotic cells in the developing MPNc. To determine the mechanisms for the sex differences in apoptosis in these nuclei, we compared the expression of the Bcl‐2 family members and active caspase‐3 in postnatal female and male rats. Western blot analyses for the Bcl‐2 family proteins were performed using preoptic tissues isolated from the brain on postnatal day (PD) 1 (day of birth) or on PD8. In the AVPV‐containing tissues of PD1 rats, there were significant sex differences in the level of Bcl‐2 (female > male) and Bax (female < male) proteins, but not of Bcl‐xL or Bad proteins. In the MPNc‐containing tissues of PD8 rats, there were significant sex differences in the protein levels for Bcl‐2 (female < male), Bax (female > male), and Bad (female < male), but not for Bcl‐xL. Immunohistochemical analyses showed significant sex differences in the number of active caspase‐3‐immunoreactive cells in the AVPV on PD1 (female < male) and in the MPNc on PD8 (female > male). We further found that active caspase‐3‐immunoreactive cells of the AVPV and MPNc were immunoreactive for NeuN, a neuronal marker. These results suggest that there are sex differences in the induction of apoptosis via the mitochondrial pathway during development of the AVPV and MPNc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

19.
AVP synthesis, storage, and osmotically stimulated release are reduced in young adult rats exposed prenatally to ethanol (PE). Whether the reduced release of AVP to the osmotic stimulus is due to impairment of the vasopressin system or specifically to an osmoreceptor-mediated release is not known. The present experiments were done, therefore, to determine whether a hemorrhage-induced AVP response would also be diminished in PE-exposed rats. Pregnant rats were fed either a control liquid diet [no prenatal ethanol (NPE)] or a liquid diet with 35% of the calories from ethanol from days 7-21 of pregnancy. Offspring were weaned at 3 wk of life. At 11 wk of age, femoral arterial catheters were surgically placed, and blood volumes were determined at 12 wk. Three days later, two hemorrhages of 10% of the blood volume were performed with samples taken before and 10 min after the hemorrhages. After a 20% blood loss, plasma AVP was 19% higher in NPE rats than in the PE rats despite no differences in mean arterial blood pressure (MABP). Also, hypothalamic AVP mRNA and pituitary AVP content were reduced in PE rats. Furthermore, confirming an earlier report of sex differences in AVP release, the hemorrhage-induced hormone response was twofold greater in female rats than male rats, regardless of previous ethanol exposure. These studies demonstrate that the AVP response to hemorrhage is reduced in PE rats independently of differences in MABP. The data are compatible with a theory of a reduced number of hemorrhage-responsive vasopressinergic neurons capable of stimulated AVP release in PE rats.  相似文献   

20.
Relaxin‐3 (RLN3) is an orexigenic neuropeptide that produces sex‐specific effects on food intake by stronger stimulation of feeding in female compared with male rats. This study determined which hypothalamic nuclei and associated neuropeptides may be involved in the sex‐specific orexigenic effects of RLN3. Relaxin‐3 (800 pmol) or vehicle was injected into the lateral ventricle of female and male rats. Food and water intake were measured after the first injection, and rats were euthanized after the second injection to determine the mRNA expression of the hypothalamic neuropeptides. Food but not water intake showed sex‐specific effects of RLN3. Stimulation of food intake by RLN3 was significantly higher in female than in male rats. No effect of RLN3 injection was found on c‐fos mRNA expression in the arcuate, dorsomedial and ventromedial hypothalamic nuclei. Increased c‐fos mRNA expression was observed in the paraventricular hypothalamic nucleus (PVN) in both sexes and in the lateral hypothalamic area (LHA) in female rats. Relaxin‐3 injections led to a sex‐nonspecific increase in the expression of oxytocin mRNA in the magnocellular PVN. Conversely, RLN3‐induced expression of anorexigenic neuropeptide arginine vasopressin (AVP) was significantly higher in the parvocellular PVN in male compared with female rats. Finally, RLN3 administration significantly increased the expression of orexin (ORX) mRNA in the LHA in female but not in male rats. Stronger expression of anorexigenic AVP in the PVN in male rats and increased expression of ORX in the LHA in female rats may contribute to stronger orexigenic effects of RLN3 in female rats compared with male rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号