首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods of measuring oxygen solubility in culture media are scarce, and those available are tedious to apply. A simple colorimetric assay was developed and applied to the analysis of oxygen solubility during alcoholic fermentation. The method was based on the consumption of oxygen by glucose oxidase activity and the production of the pink quinone of syringaldazine by coupled peroxidase activity. Color formation at 526 nm progressed through an optimum that was a linear function of the oxygen added to the assay. Sensitivity was maximized by operating at pH 7 and limiting the medium sample volume added. Each assay took 10-15 min to prepare and react. Reaction time was minimized by using abundant glucose and enzyme concentrations. Data obtained by the assay developed showed good agreement with published oxygen solubilities in water and selected media at various temperatures. Subsequent analyses of fermentation broths indicated falling sugar concentration to be primarily responsible for increases in oxygen solubility during fermentation. For example, during fermentations started with 230 g/L xylose or glucose, oxygen solubility could increase by 41% due to sugar consumption alone. This procedure can provide the solubility data needed to accurately calibrate in-line electronic probes for monitoring dissolved oxygen concentration during fermentation processes.  相似文献   

2.
目的:促溶剂通常用于甾体生物催化过程以提高底物溶解度,但在发酵液中添加促溶剂对菌体形态及发酵液特性的影响还少有报道。方法:利用旋转流变仪和顺磁分析仪分别对发酵液的流变特性及体积氧传递系数KLa进行监测。结果:无论是否添加促溶剂,发酵液都表现出非牛顿流体力学特性,但添加3%1,2丙二醇后同一时期发酵液稠度系数减小大约17%,而流动指数平均增加8%。结论:添加促溶剂使得发酵液表观黏度减小,体积氧传递系数增大,从而有利于甾体化合物的生物转化。  相似文献   

3.
Discrete oxygen additions during oenological fermentations can have beneficial effects both on yeast performance and on the resulting wine quality. However, the amount and time of the additions must be carefully chosen to avoid detrimental effects. So far, most oxygen additions are carried out empirically, since the oxygen dynamics in the fermenting must are not completely understood. To efficiently manage oxygen dosage, we developed a mass balance model of the kinetics of oxygen dissolution and biological uptake during wine fermentation on a laboratory scale. Model calibration was carried out employing a novel dynamic desorption-absorption cycle based on two optical sensors able to generate enough experimental data for the precise determination of oxygen uptake and volumetric mass transfer coefficients. A useful system for estimating the oxygen solubility in defined medium and musts was also developed and incorporated into the mass balance model. Results indicated that several factors, such as the fermentation phase, wine composition, mixing and carbon dioxide concentration, must be considered when performing oxygen addition during oenological fermentations. The present model will help develop better oxygen addition policies in wine fermentations on an industrial scale.  相似文献   

4.
5.
The productivity of mammalian cells can be enhanced by facilitating adequate oxygen transfer into the cultivation medium. However, current methods of controlling dissolved oxygen (DO) fail to account for alterations in medium composition during the course of the fermentation. These changes, which directly affect gas solubility and overall mass transfer coefficient, may be significant and deteriorate controller's performance in the long run. In this paper, the applications of Generalized Predictive Controllers (GPC) to DO control were investigated in a shear sensitive environment and compared to PID and Model Predictive Controllers (MPC). Input and output data for system identification were initially generated by varying the composition of oxygen fed into the bioreactor from 0 to 0.21 mol % while keeping the total inlet gas flow rate at 8.75 vvm. The process was identified using an AutoRegressive model with eXogeneous inputs (ARX) model and tested on different data sets. The model parameters were then correlated with the overall mass transfer coefficients. In simulation tests, the output of the PID controller switched from minimum to maximum values while more continuous control signals were obtained with the MPC and GPC controllers. When tested in a cell-free medium, all three controllers were able to track setpoint changes with some chattering observed in the control signals. The GPC outperformed the MPC and PID controllers when applied to the cultivation of hybridoma cells.  相似文献   

6.
Wang Jianlong   《Process Biochemistry》2000,35(10):1079-1083
Due to the significant oxygen requirement during citric acid production and the relatively low solubility of oxygen in water, aeration is critical. The potential use of n-dodecane as an oxygen-vector for improvement of citric acid production by Aspergillus niger was studied. The volumetric fraction of oxygen-vector has a great influence on the volumetric oxygen transfer coefficient kLa. With the addition of an oxygen-vector to the fermentation medium with a final concentration of 5%, the kLa value reached a maximum value (130 h−1), which is twice that of the control experiment. The addition of 5% (v/v) n-dodecane enhanced citric acid accumulation, reduced residual sugar concentration and stimulated mycelial growth. Adding n-dodecane had no adverse effects on the cells of A. niger. The results of enzyme assays indicated that no significant differences were observed between the activity of citrate synthase of two kinds of mycelial cell-free extracts.  相似文献   

7.
Summary The equilibrium oxygen concentration (C0) was determined in a complex fermentation media containing sucrose, lysine, molasses, corn steep liquor, antifoam agents and biomass. In simple systems, with all the components being dissolved, C0 represents the oxygen solubility and linearly decreases with increasing solute concentrations. In complex solutions with multi-phase structure an increase in C0 can be detected. It suggests that C0 consists of two components — one being oxygen solubility, the other being determined by the amount of oxygen adsorbed on the interphase and bound by macromolecules. The presence of biomass leads to a decrease in C0.  相似文献   

8.
The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.  相似文献   

9.
Summary A large reduction (about 30%–78%) is observed in the production of alpha-amylase by Bacillus licheniformis M27 in standardized wheat bran medium under solid-state fermentation when the moisture content of the medium is higher than the standardized value (65%). However, a surge in enzyme production in the first 24 h of fermentation is observed in media with 75% and 85% moisture. The role of decreased oxygen transfer in reducing enzyme tires by about 78% in the medium containing 95% moisture is evident, since the enzyme tire can be effectively increased by agitating the medium during fermentation. No such limitation in oxygen transfer is evident in medium containing 65% moisture even where incubated under static conditions or when the flask is capped by aluminum foil. The data indicate the critical importance of the moisture content of the medium in -amylase production by B. licheniformis M27 in solid-state fermentation systems. The results also have several implications of scientific and techno-economic importance and are useful in explaining some of the advantages of a solid-state fermentation system over the submerged fermentation process. Offprint requests to: B. K. Lonsane  相似文献   

10.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

11.
A suitable medium was developed from modified Richard's medium plus V8 juice (RM8) to produce high levels of desiccation-tolerant conidia ofTrichoderma harzianumstrain 1295-22. The addition of 9% (v/v) glycerol to RM8 improved both biomass production and desiccation tolerance of the conidia ofT. harzianum.This medium was then used in a laboratory scale fermenter (1.5 liter) to determine optimal operating conditions. The optimal temperature for conidial production and desiccation tolerance improvement in the fermenter was 32°C when dissolved oxygen was maintained at 50% saturation of air, and the stirring rate was 1000 revolutions per minute. The initial water potential of the medium (with 9% glycerol) was −3.7 MPa, the pH was 6, and neither was controlled during fermentation. Changes in medium pH and dissolved oxygen were associated with the stages of morphological development and conidiation. The pH of the medium decreased concurrently with germ-tube elongation and mycelium development and then increased to 6.0–6.2 at phialide formation. Intensive conidiation occurred at pH 6.3–6.5 and reached its maximal level at 6.9–7.1. Changes in pH values could be used as indicators to monitor the morphological development and conidiation ofT. harzianumduring fermentation. The use of a 48-h-old culture inoculum, rather than conidial inoculum, to start fermentation reduced the time required to complete the shift from vegetative growth to phialide formation. Intensive conidiation occurred immediately after the addition of culture inoculum and reached maximum levels within 68 h of fermentation. Dry weight of biomass increased with the duration of fermentation and was greatest at 96 h. However, no improvements in conidia/gram and CFU/gram were achieved after 72 h of fermentation. The desiccation tolerance of conidia harvested at 72 or 96 h was significantly (P = 0.05) greater than that of conidia harvested at 48 h of fermentation. Results obtained from this study could be used for further scale-up of the fermentation process.  相似文献   

12.
The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.  相似文献   

13.
Production of a tumor-inhibitory asparaginase by submerged fermentation with Serratia marcescens ATCC 60 was studied to ascertain optimal nutritional conditions for large-scale production leading to enzyme purification studies. Five strains of S. marcescens were screened in shake-flask studies and were found to produce 0.8 to 3.7 IU/ml 48 hr after inoculation. The requirements for asparaginase production with S. marcescens ATCC 60, the high producing strain, included the following: 4% autolyzed yeast extract medium (initial pH 5.0), an incubation temperature of 26 C, and limited aeration for a zero level of dissolved oxygen during the fermentation. Addition of various carbohydrates to the fermentation medium did not enhance yields. The peak cell population in the fermentation medium and the maximal asparaginase yields occurred simultaneously. Highest enzyme yields were found when the pH of the fermentation cycle rose to approximately 8.5. Yields of 4 IU of asparaginase/ml of cell suspension have been obtained consistently in 40 to 42 hr from 10-liter volumes (500 ml/4-liter bottle) produced on a reciprocating shaker. Scale-up to a 60-liter fermentor yielded 3.1 IU/ml in 35 hr.  相似文献   

14.
供氧对产丙三醇假丝酵母科丙三醇发酵研究   总被引:2,自引:0,他引:2  
研究了产丙三醇假丝酵母(Candida glycerolgenesis)产丙三醇及副产物与氧供给的关系。摇瓶试验发现其它营养条件一定,玉米浆添加量决定酵母量。在0.4%的玉米浆和装液比0.08时产丙醇最高,副产物乙醇、乙酸和乙酸乙酯最小,玉米浆和装液比影响丙三醇和副产物的形成。在5L的反应器中以搅拌转速控制供氧水平,菌体生长阶段比耗氧速率为28mg/(g.h),在发酵阶段比耗氧速率16mg/(g.  相似文献   

15.
Effective oxygen diffusion coefficients and solubilities were measured for submerged cultures of Saccharomyces cerevisiae, Escherichia coli, and Penicillium chrysogenum. Both effective oxygen diffusion coefficients and solubilities were found to decrease with increasing cell concentrations in the fermentation media. Comparison of the experimental results of effective oxygen diffusion coefficients in fermentation media with values theoretically predicted on the assumption of unpenetrable microbial cells indicates that oxygen molecules diffuse through the cells during the diffusion process. Within the cell concentration range of typical submerged fermentations, the effective oxygen diffusion coefficient of the fermentation media can be described as D(e) = A(1)f + A(2)f(2). In this equation, fis the cell volume fraction and both A(1) and A(2) are functions of the shape of the cells and the ratio of effective oxygen diffusion coefficient in microbial cells to that in the medium.  相似文献   

16.
氧载体对L—天冬酰胺酶发酵过程影响的研究   总被引:5,自引:0,他引:5  
以抗癌药物L天冬酰胺酶生产为应用背景,针对发酵过程中存在严重耗氧问题,研究了氧载体对发酵过程的影响。通过对几种氧载体的筛选,认为正十二烷最适合于该发酵过程。随后以产物L天冬酰胺酶活性、菌体浓度以及溶氧水平为主要指标,考察了氧载体在发酵过程中的作用,实验表明,发酵基质中5%正十二烷的添加量为最佳浓度,这种氧载体的加入,明显地提高了发酵介质中的溶氧水平,改善了供氧条件,增加了菌体浓度,提高了L天冬酰胺酶发酵水平,在优化条件下,可使发酵液最终酶活提高21%左右  相似文献   

17.
基因工程菌发酵研究进展   总被引:2,自引:0,他引:2  
基因工程菌发酵主要目标是获取高产外源基因表达蛋白。介绍并分析了基因工程菌发酵过程中表达系统、培养基、温度、pH值、溶解氧和诱导条件等因素对发酵的影响;论述了工程菌高密度培养所需的培养方式,并总结了基因工程菌发酵领域近年来的一些进展。  相似文献   

18.
We optimized culture medium and batch-fed fermentation conditions to enhance production of an acetyl esterase from Pseudomonas sp. ECU1011 (PSAE). This enzyme enantioselectively deacetylates α-acetoxyphenylacetic acid. The medium was redesigned by single-factor and statistical optimization. The addition of ZnSO4 enhanced enzyme production by 37%. Yeast extract concentration was directly associated with the enzyme production. The fermentation was scaled up in a 5-l fermenter with the optimized medium, and the correlations between enzyme production and dissolved oxygen, pH, and feeding strategy were investigated. The fermentation process was highly oxygen-demanding, pH sensitive and mandelic acid-inducible. The fermentation pH was controlled at 7.5 by a pH and dissolved oxygen feedback strategy. Feeding mandelic acid as both a pH regulator and an enzyme inducer increased the enzyme production by 23%. The results of the medium redesign experiments were confirmed and explained in fed-batch culture experiments. Mathematical models describing the fermentation processes indicated that the enzyme production was strongly associated with cell growth. The optimized pH and dissolved oxygen stat fed-batch process resulted high volumetric production of PSAE (4166 U/l, 7.2-fold higher than the initial) without enantioselectivity decline. This process has potential applications for industrial production of chiral mandelic acid or its derivatives.  相似文献   

19.
A fast physical method is used to measure oxygen solubilities in various solutions of sugars and salts, in nutrition media, and in fermentation broths of Penicillium chrysogenum. The findings were compared with the predictions of a solubility model which assumes that the solubility reduction is log-additive with respect to various compounds (mainly sugars and electrolytes). A striking agreement between experimental results and predictions was found.  相似文献   

20.
In this study, the effect of an oxygen carrier, perfluorocarbon, on actinorhodin fermentation by Streptomyces coelicolor A3(2) was investigated using a chemically defined medium in 2 and 20 l bioreactors. The inclusion of 50% (v/v) perfluorocarbon in the fermentation medium resulted in a five-fold increase in the maximum antibiotic concentration. The use of perfluorocarbon also caused remarkable increases in both glucose and oxygen consumption rates. Moreover, the increasing concentrations of perfluorocarbon improved the dissolved oxygen profile by raising the minimum dissolved oxygen concentration. It was found that observed increases in the antibiotic production were linearly related to the volumetric oxygen uptake rates. This result could perhaps be attributed to the enhancement of oxygen transfer in S. coelicolor cultures due to the higher oxygen solubilities of the fermentation medium through inclusion of perfluorodecalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号