首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ganoderma boninense basal stem rot poses a serious threat to the oil palm industry. The effects of external disease symptoms and coastal soils (Briah – Typic Endoaquepts, Jawa – Typic Sulfaquepts, and Selangor – Typic Humaquepts) on the life expectancy of the infected palms, from disease detection to death, were studied. Six-monthly censuses on disease classes for each palm were recorded between 2004 and 2012. Survival curves of disease symptoms and soil types were compared using Kaplan–Meier and log-rank methods, respectively. Ganoderma-infected palms in acid-sulphate (AS) and potential AS soils recorded lower life expectancy. Survival duration of infected palms with foliar symptoms was 12-months shorter. External factors, such as soil type may influence the survival of infected palms and soil types may pre-dispose oil palm to higher risk of Ganoderma infection. More effective Ganoderma management for palms planted on Coastal soils (with and without AS layer) have been proposed.  相似文献   

2.
Oil palm plantations cover ≈14.6 million ha worldwide and the total area under cultivation is expected to increase during the 21st century . Indonesia and Malaysia together account for 87% of global palm oil production and the combined harvested area in these countries has expanded by 6.5 million ha since 1990. Despite this, soil C cycling in oil palm systems is not well quantified but such information is needed for C budget inventories. We quantified soil C storage (root biomass, soil organic matter (SOM) and microbial biomass) and losses [potential soil respiration (Rs) and soil surface CO2 flux (Fs)] in mineral soils from an oil palm plantation chronosequence (11–34 years since planting) in Selangor, Malaysia. There were no significant effects of plantation age on SOM, microbial biomass, Rs or Fs, implying soil C was in dynamic equilibrium over the chronosequence. However, there was a significant increase in root biomass with plantation age, indicating a short‐term C sink. Across the chronosequence, Rs was driven by soil moisture, soil particle size, root biomass and soil microbial biomass N but not microbial biomass C. This suggests that the nutrient status of the microbial community may be of equal or greater importance for soil CO2 losses than substrate availability and also raises particular concerns regarding the addition of nitrogenous fertilizer, i.e. increased yields will be associated with increased soil CO2 emissions. To fully assess the impact of oil palm plantations on soil C storage, initial soil C losses following land conversion (e.g. from native forest or other previous plantations) must be accounted for. If initial soil C losses are large, our data show that there is no accumulation of stable C in the soil as the plantation matures and hence the conversion to oil palm would probably represent a net loss of soil C.  相似文献   

3.
Cadmium (Cd) is a toxic trace metal pollutant for humans, animals, and plants. Tobacco is a wellknown efficient accumulator of Cd and the genotypic differences in Cd uptake and the response to Cd was not determined. The objectives of this study were to investigate: 1) the effects of Cd on the growth and development of different tobacco cultivars; 2) the differences among tobacco cultivars in Cd concentration, uptake, and use for the phytoremediation of polluted soils with Cd; and (3) the interactions between Cd and Zn with respect to concentration and uptake. The Cd level affected the number of leaves and dry matter accumulation, and there were differences among the different cultivars that were used. Furthermore, some cultivars showed a higher reduction in growth than others, indicating that they are more sensitive to Cd level in the soil. Moreover, differences existed among the cultivars for the Cd concentration and uptake. There also were negative correlations between Cd and Zn concentrations; as Cd accumulation increased, Zn accumulation decreased, which showed that the two heavy metals were antagonistic. These results suggest that tobacco cultivars differed greatly in their growth and developmental responses to Cd and in the concentration and uptake of Cd and Zn. In addition, it is possible to use certain tobacco cultivars to lower the Cd concentration in the soil.  相似文献   

4.
Fertilizer Impacts on Cadmium Availability in Agricultural Soils and Crops   总被引:2,自引:0,他引:2  
Ingestion in food is a major pathway of cadmium (Cd) exposure for humans. It is therefore desirable to ensure that Cd concentrations in crops that enter the human food chain do not increase to levels that may lead to health risks. Phosphorus fertilizers contain Cd as a contaminant at levels varying from trace amounts to as much as 300 mg Cd kg–1 of dry product and therefore can be a major source of Cd input to agricultural systems. Fertilization can influence Cd accumulation in crops by direct Cd addition and by indirect effects on soil pH, ionic strength, Zn concentration, rhizosphere chemistry, microbial activity, and plant growth. Cadmium will accumulate in the soils from fertilizer applications if the amount of Cd added in fertilizer is greater than the amount of Cd removal, whether in harvested crop removal or other loss pathways such as leaching, erosion, or bioturbation. Assessment of the impact of fertilizer management practices on the risk of Cd toxicity to the soil ecosystem and the risk of movement of Cd into the human diet must consider both the direct influence of Cd addition as a fertilizer contaminant and the indirect effects of fertilizer application on Cd phytoavailability. Cadmium accumulation in soils and crops can be minimized by adoption of management practices that improve fertilizer-use efficiency while minimizing Cd input.  相似文献   

5.
Knight  B.  Zhao  F.J.  McGrath  S.P.  Shen  Z.G. 《Plant and Soil》1997,197(1):71-78
The hyperaccumulator Thlaspi caerulescens J & C Presl. was grown in seven different soils collected from around Europe that had been contaminated with heavy metals by industrial activity or the disposal of sewage sludge to land. Zinc accumulation factors (shoot concentration/initial soil solution concentration) ranged from 3500–85 000 with a mean value of around 36 000. This compares with mean accumulation factors of 636, 66 and 122 for Cd, Ca and Mg, respectively. The concentration of Zn in the shoots was much greater than in the roots. The total removal of Zn and Cd ranged from 8 to 30 and from 0.02 to 0.5 mg kg-1 soil, respectively. The Zn concentration in shoots of T. caerulescens correlated, using a curvilinear relationship, with the initial Zn concentration in soil solution (R2 = total Zn 0.78; Zn2+ 0.80). There was no relationship between the uptake of Zn and the total Zn concentration in the soil. In most soils, solution pH increased only slightly after growth of T. caerulescens, indicating that acidification was not the mechanism used to mobilise Zn in the soil. Dissolved organic carbon concentrations generally increased but characterisation of the component organic compounds was not attempted. The concentrations of Zn and Cd in soil solution decreased considerably after growth of T. caerulescens. The percentages of Zn and Cd in soil solution present as free ions also decreased. However, the decrease of Zn in soil solution after growth accounted for only about 1% of the total Zn uptake by T. caerulescens. This was much lower than for Cd, Ca and Mg. The results suggest that either T. caerulescens was highly efficient at mobilising Zn which was not soluble initially, or the soils used had large buffering capacities to replenish soil solution Zn within a short time. This work highlights the need to investigate the role of root exudates on the mobilisation of Zn and Cd in soils by the hyperaccumulator T. caerulescens.  相似文献   

6.
The main cadmium exposure pathway for humans is through diet. A database on Cd concentration in soils and accumulation in edible vegetables from tropical and temperate regions was organized, soil–plant relationships were derived, and then critical soil Cd concentrations were calculated based on human exposure parameters for the State of São Paulo, Brazil. Cadmium accumulation in leafy and root vegetables could be predicted by multiple regression analysis and most of the variance was explained when total Cd concentration and pH in soil were included as predictors. The calculated Cd bioconcentration factors (BCFs) for the tropical dataset were higher as compared to the temperate dataset. Consequently, critical soil Cd concentrations were from 1.7- to 3.2-fold lower for tropical conditions. Higher humidity and temperature at the tropics, as well as more weathered soils with lower retention capacity of Cd, may explain the higher Cd uptake and accumulation in tropical than in temperate regions. To protect human health, exclusive data regarding Cd in soils and edible vegetables from tropical regions should be used for the State of São Paulo to derive critical soil Cd concentrations, instead of (additional) data from temperate regions.  相似文献   

7.
The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils.  相似文献   

8.
Cadmium (Cd) accumulation by terrestrial higher plants is an intriguing phenomenon that may be exploited for phytoextraction of Cd-contaminated soils. Characterizing the physiological processes responsible for elevated concentrations of Cd in shoots is a first step towards a comprehensive understanding of the mechanisms underlying Cd accumulation in plants and may eventually improve the efficiency of phytoextraction. Woody species that can accumulate Cd have been recently recommended as good candidates for phytoextraction of Cd-contaminated soils. However, little is known about the mechanisms of Cd accumulation by woody species. In an attempt to understand the physiological processes contributing to Cd accumulation in woody species, Cd uptake and translocation by a novel tropical Cd-accumulating tree, star fruit (Averrhoa carambola) were characterized and compared with those of a non-Cd-accumulating tree (Clausena lansium). Our results showed that A. carambola had higher Cd uptake and root-to-shoot translocation efficiencies than C. lansium, which might account for its greater Cd-accumulating capacity. Furthermore, Cd accumulation by A. carambola was not significantly affected by zinc (Zn), whereas Zn accumulation was greatly lowered by Cd. This phenomenon could not be fully explained by a simple competition between Cd2+ and Zn2+, implying the existence of a transport system with a preference for Cd over Zn. Collectively, our results indicate that A. carambola has noteworthy physiological traits associated with accumulation of Cd to high levels.  相似文献   

9.
Adsorption of Cu, Cd, Ni, and Zn in single and multi-metal solutions by agricultural and forest soils was investigated in batch sorption experiments. The results showed significant differences in sorption capacities of the studied soils. The selectivity order was as follows: agricultural soil? top forest soil > bottom forest soil. The adsorption sequence Cu > Zn > Ni > Cd was established for the agricultural and bottom forest soil, while the order for the top forest soil was Cu > Ni > Zn > Cd. The experimental isotherms for the metal sorption were described satisfactorily by the Freundlich and Langmuir models. The competitive adsorption experiment indicated a reduction in the amount of metals adsorbed by the soils from the multi-metal solution compared to the single metal solution. Properties of the soils, such as pH, content of clay and organic matter, exchangeable bases and hydrolytic acidity, showed a significant influence on adsorption capacities of the studied soils.  相似文献   

10.
Zhao  F.J.  Lombi  E.  McGrath  S.P. 《Plant and Soil》2003,249(1):37-43
Thlaspi caerulescens is a Zn and Cd hyperaccumulator, and has been tested for its phytoremediation potential. In this paper we examine the relationships between the concentrations of Zn and Cd in soil and in T. caerulescens shoots, and calculate the rates of Zn and Cd extraction from soil. Using published data from field surveys, field and pot experiments, we show that the concentrations of Zn and Cd in the shoots correlate with the concentrations of Zn and Cd in soils in a log-linear fashion over three orders of magnitude. There is little systematic difference between different populations of T. caerulescens in the relationship between soil and plant Zn concentrations. In contrast, populations from southern France are far superior to those from other regions in Cd accumulation. Bioaccumulation factors (plant to soil concentration ratio) for Zn and Cd decrease log-linearly with soil metal concentration. Model calculations show that phytoremediation using T. caerulescens is feasible when soil is only moderately contaminated with Zn and Cd, and the phytoremediation potential is better for Cd than for Zn if the populations from southern France are used. Recent progress in the understanding of the mechanisms of Zn and Cd uptake by T. caerulescens is also reviewed.  相似文献   

11.

Aims

Phytomanagement of metal-polluted soils requires information on plant responses to metal availability in soil, but the predictability of metal accumulation in plant shoots and/or roots may be limited by metal toxicity and inherent shortfalls of the bioavailability assays.

Methods

We measured the uptake of Cd and Zn in a Salix smithiana clone grown in a pot experiment on soils with different characteristics and metal availabilities, determined by conventional soil single extractions (0.05 M Na2-EDTA and 1 M NH4NO3), soil solution obtained by centrifugation, and diffusive gradients in thin films (DGT). The Cd and Zn phytoavailability after a 2-year phytoextraction by willow was assessed by metal accumulation in the straw of the following barley culture.

Results

The phytoextraction efficiency was largest on a moderately polluted acid soil. Biomass and shoot Zn concentrations of S. smithiana were better predicted by DGT-measured Zn concentrations in soil solution (C DGT) than by Zn concentrations in the soil solution and extractable soil fractions. The weaker correlation for Cd in shoots may be related to relative Cd enrichment in the plant tissues. The metal accumulation in barley straw was unaffected or increased after a 2-year phytoextraction.

Conclusions

The shoot Zn and Cd removal of the tested Salix clone can be predicted by C DGT concentrations and is highest on either calcareous or moderately polluted acid soils. Single extraction with NH4NO3 and the C DGT value of Cd were not able to predict shoot Cd removal on the tested soils. Only shoot removal of Zn was predicted fairly well by the C DGT value.  相似文献   

12.
This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow (“Fish Creek” – Salix purpurea, SV1 – Salix x dasyclados and SX67 – Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO3-extractable and H2O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.  相似文献   

13.
Pollution caused by traffic activities is increasingly becoming a great threat to urban environmental quality and human health in many municipalities in Northwest China. The Sophora japonica L., a native tree species occurring widely in many regions of Northwest China, was used as a case study to assess the potential effects of traffic pollution on heavy metal accumulation in leaves of S. japonica trees and associated soils. Fifty-four leaf samples and 41 relevant soil samples (0–10 cm) were collected systematically along main trunk roads and at parks distant from main trunk roads in the city of Lanzhou, Northwest China, respectively. Traffic pollution has resulted in significant accumulation of heavy metals in both the roadside leaves and soils, but the pattern and level of accumulation varied remarkably between elements. The nine elements examined can be classified into three groups relating to their responses to traffic pollution. The first group, including Zn, Cd, Hg, Pb and Cr, showed greater accumulation in both roadside soils and leaves. The second group, including Co, Ni and As, indicated greater accumulation in the roadside leaves only. The third group included only Cu and demonstrated a greater accumulation in the roadside soils only. Overall, Zn, Cd, Hg, Pb, Cu and Cr concentrations in the roadside soils were higher (8–72%) than those in the park soils, as well as much higher (32–300%) than the background values of the respective elements set for local soils (Lanzhou). Zn, Cd, As, Hg, Pb, Cr, Ni and Co concentrations in the roadside leaves were higher (27–111%) than those in the park leaves. The differences found among elements in the levels of accumulation suggest that the relative importance of the individual elements contributing to urban environmental deterioration will vary considerably.  相似文献   

14.
We studied the distribution of seven heavy metals and As in typical municipal greenbelt roadside soils in Pudong New District, Shanghai, China. As and Ni showed no significant accumulation compared with the background values of the local soils, but there was strong evidence of accumulation of Cd, Cr, Cu, Hg, Pb and Zn in the roadside soils. However, only Zn and Cd contents were higher than the pollution thresholds of the Chinese National Soil Quality standard. The concentrations of heavy metal(loid)s in the soils were significantly affected by the length of time since the roads were constructed. Soils from areas adjacent to an older road had higher levels of Cu, Pb, Cd and Zn. In terms of spatial distribution, more Cd, Cu, Pb and Zn were found in the soil from the green areas of median between carriageways than from those of the roadside verges. Vertical distribution analysis shows that the contents of Pb, Cd, Cu and Zn had maximum values in the topsoil and were substantially lower in the deeper layers of the soil profile. Moreover, correlation analysis reveals that these four heavy metals originated from the same pollution sources and their contents were directly associated with the traffic density.  相似文献   

15.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

16.
It is important to use proper agronomic management to reduce cadmium (Cd) accumulation in plants, ensuring food safety. To find the most effective agronomic approach, the effect of foliar spraying and seed soaking of zinc (Zn) fertilizers on Cd accumulation in cucumbers (Cucumis sativus L.) grown in two soil Cd levels (2 and 5 mg kg?1 Cd) with and without an immobilizing amendment (red mud, RM) was investigated in the present study. The results showed that the treatment of foliar Zn or seed Zn significantly decreased the Cd concentration in cucumber shoots by about 12–36% in Cd-contaminated soils without amendment. Combined with RM treatment, the foliar Zn treatment further decreased the Cd concentration in cucumber shoots by up to 48–66% in Cd-contaminated soils. There were significant negative correlations between Cd and Zn concentrations in shoots of cucumbers grown in soils treated with RM and foliar Zn. The results revealed that the cucumber seedlings treated with RM and foliar Zn had a higher capacity for limiting the transfer of Cd to aboveground tissues. The results also suggested that increasing seed Zn concentrations sufficiently might act as an efficient, economic, and practical method for decreasing Cd uptake in crops grown in mildly Cd-contaminated and Zn-deficient soils.  相似文献   

17.
Cadmium (Cd) accumulation has been found to vary between cultivars of durum wheat (Triticum turgidum var. durum), and it is hypothesized that low-molecular-weight organic acids (LMWOAs) produced at the soil-root interface (rhizosphere) may play an important role in the availability and uptake of Cd by these plants. The objective of this study, therefore, was to (1) investigate the nature and quantity of LMWOAs present in the rhizosphere of durum wheat cultivars Arcola (low Cd accumulator) and Kyle (high Cd accumulator) grown in three different soils: Yorkton, Sutherland and Waitville, and (2) determine the relationship between Cd accumulation in these plants and LMWOAs present in the rhizosphere. Plants were grown for two weeks in pot-cultures under growth chamber conditions. Oxalic, fumaric, succinic, L-malic, tartaric, citric, acetic, propionic and butyric acids were found and quantified in the water extracts of rhizosphere soil, with acetic and succinic acids being predominant. No water extractable LMWOAs were identified in the bulk soil. Total amount of LMWOAs in the rhizosphere soil of the high Cd accumulator (Kyle) was significantly higher than that for the low Cd accumulator (Arcola) in all three soils. Furthermore, large differences in amounts of LMWOAs were found in the rhizosphere soil for the same cultivars grown in different soils and followed the pattern: Sutherland > Waitville > Yorkton. Extractable soil Cd (M NH4Cl) and Cd accumulation in the plants also followed the same soil sequence as LMWOA production. Cadmium accumulation by the high and low Cd accumulating cultivars was proportional to the levels of LMWOAs found in the rhizosphere soil of each cultivar. These results suggest that the differing levels of LMWOAs present in the rhizosphere soil played an important role in the solubilization of particulate-bound Cd into soil solution and its subsequent phytoaccumulation by the high and low Cd accumulating cultivars.  相似文献   

18.
Aims

Data on the variability of hyperaccumulation potential of the facultative serpentinophytes Noccaea kovatsii and N. praecox on different geological substrates are scarce. The aim of this study was to assess the accumulation potential of these two species from ultramafic and non-ultramafic substrates, with special emphasis on the hyperaccumulation of Ni, Zn and Cd.

Methods

Samples of plants and corresponding soils were collected from 16 sites covering a wide range of geochemistry. Elemental concentrations were determined in the roots, shoots and the rhizosphere soils. The pH, particle size distribution and content of organic matter were also determined in the soil samples.

Results

All ultramafic accessions of both species hyperaccumulated Ni with high intraspecific variability. Only one accession of N. kovatsii from a schist soil hyperaccumulated Zn, with also a high Cd accumulation. Accumulation and translocation of Ni in both species were much higher in the ultramafic accessions, whereas Zn accumulation and translocation was found in both ultramafic and non-ultramafic accessions.

Conclusions

Ni accumulation and translocation was restricted to ultramafic populations of both species, whereas it is a species-wide trait for Zn. This study provides new and comprehensive information on the natural variation of hyperaccumulation of Ni, Zn and Cd in N. kovatsii and N. praecox.

  相似文献   

19.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

20.
Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号