首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Individual growth factors can regulate multiple aspects of behavior within a single cell during differentiation, with each signaling pathway controlled independently and also responsive to other receptors such as cell surface integrins. The mechanisms by which this is achieved remain poorly understood. Here we use myelin-forming oligodendrocytes and their precursors to examine the role of lipid rafts, cholesterol and sphingolipid-rich microdomains of the cell membrane implicated in cell signaling. In these cells, the growth factor PDGF has sequential and independent roles in proliferation and survival. We show that the oligodendrocyte PDGFalpha receptor becomes sequestered in a raft compartment at the developmental stage when PDGF ceases to promote proliferation, but is now required for survival. We also show that laminin-2, which is expressed on axons in the CNS and which provides a target-dependent signal for oligodendrocyte survival by amplification of PDGFalphaR signaling, induces clustering of the laminin binding integrin alpha6beta1 with the PDGFalphaR-containing lipid raft domains. This extracellular matrix-induced colocalization of integrin and growth factor receptor generates a signaling environment within the raft for survival-promoting PI3K/Akt activity. These results demonstrate novel signaling roles for lipid rafts that ensure the separation and amplification of growth factor signaling pathways during development.  相似文献   

2.
Bock J  Gulbins E 《FEBS letters》2003,534(1-3):169-174
Stimulation of CD40 has been previously shown to result in a release of ceramide in small sphingolipid-enriched rafts in the cell membrane [Grassmé et al., J. Immunol. 168 (2002) 298-307]. Those rafts fused to larger signaling platforms that served to cluster CD40. Here, we defined molecular mechanisms of CD40 clustering in membrane platforms. To this end, we replaced the transmembranous domain of CD40 with that of CD45, a molecule known to be excluded from lipid rafts. Murine T cells were stably transfected with wild-type CD40 or chimeric CD40/CD45. Flow cytometry confirmed normal binding properties of the mutant to CD40 ligand. Stimulation with CD40 ligand resulted in clustering of wild-type CD40, while the chimeric CD40/45 receptor failed to cluster. This correlated with a deficiency of the chimeric receptor to activate JNK, p38 MAP kinase and SAPK, known signaling molecules of the intracellular pathway initiated by CD40. Forced crosslinking of the CD40/45 chimeric receptor restored, at least partially, these signaling events. The results suggest that the transmembranous domain of CD40 is central for the recruitment to and clustering of CD40 in membrane platforms.  相似文献   

3.
The platelet collagen receptor glycoprotein VI (GPVI) couples to the immune receptor adaptor Fc receptor gamma-chain (FcRgamma) and signals using many of the same intracellular signaling molecules as immune receptors. Studies of immune receptor signaling have revealed a critical role for specialized areas of the cell membrane known as lipid rafts, which are enriched in essential signaling molecules. However, the role of lipid rafts in signaling in nonimmune cells such as platelets remains poorly defined. This study shows that GPVI-FcRgamma does not constitutively associate with rafts, but is recruited to lipid rafts following receptor stimulation in both GPVI-expressing RBL-2H3 cells and human platelets. FcRgamma is required for GPVI association with lipid rafts, as mutant GPVI receptors that do not couple to FcRgamma were unable to associate with lipid rafts after receptor clustering. Following GPVI stimulation in platelets, virtually all phosphorylated FcRgamma was found in lipid rafts, but inhibition of FcRgamma phosphorylation did not block receptor association with lipid rafts. This work demonstrates that lipid rafts orchestrate GPVI receptor signaling in platelets in a manner analogous to immune cell receptors and supports a model of GPVI signaling in which FcRgamma phosphorylation is controlled by ligand-dependent association with lipid rafts.  相似文献   

4.
Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-beta-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.  相似文献   

5.
5-HT is a phylogenetically conserved monoaminergic neurotransmitter which is crucial for a number of physiological processes and is dysregulated in several disease states including depression, anxiety and schizophrenia. 5-HT neurons in the central nervous system are localized in the raphe nuclei and project to a wide range of target areas. 5-HT exerts its functions through 14 subtypes of 5-HT receptors. The tertiary structures of seven transmembrane 5-HT receptors contain several important features, including cholesterol consensus motifs, prominent intracellular loops and free C-termini. Alterations of cholesterol levels affect binding of ligands to 5-HT receptors and cholesterol-enriched microdomains in the cell membrane, termed lipid rafts, regulate 5-HT receptor internalization and signaling. The intracellular loops and the C-termini of 5-HT receptors provide binding sites for interacting adaptor proteins. Adaptor proteins affect internalization, desensitization as well as G-protein dependent and independent signaling via 5-HT receptors. We will here briefly review recent progress on the role of lipid rafts and adaptor proteins in the regulation of localization, trafficking, signaling and ligand bias of 5-HT receptors.  相似文献   

6.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

7.
Receptor-ligand binding is a critical first step in signal transduction and the duration of the interaction can impact signal generation. In mammalian cells, clustering of receptors may be facilitated by heterogeneous zones of lipids, known as lipid rafts. In vitro experiments show that disruption of rafts significantly alters the dissociation of fibroblast growth factor-2 (FGF-2) from heparan sulfate proteoglycans (HSPGs), co-receptors for FGF-2. In this article, we develop a continuum stochastic formalism to address how receptor clustering might influence ligand rebinding. We find that clusters reduce the effective dissociation rate dramatically when the clusters are dense and the overall surface density of receptors is low. The effect is much less pronounced in the case of high receptor density and shows nonmonotonic behavior with time. These predictions are verified via lattice Monte Carlo simulations. Comparison with FGF-2-HSPG experimental results is made and suggests that the theory could be used to analyze similar biological systems. We further present an analysis of an additional cooperative internal-diffusion model that might be used by other systems to increase ligand retention when simple rebinding is insufficient.  相似文献   

8.
Glial cell line-derived neurotrophic factor family ligands act through the receptor tyrosine kinase Ret, which plays important roles during embryonic development for cell differentiation, survival, and migration. Ret signaling is markedly affected by compartmentalization of receptor complexes into membrane subdomains. Ret can propagate biochemical signaling from within concentrates in cholesterol-rich membrane microdomains or lipid rafts, or outside such regions, but the mechanisms for, and consequences of, Ret translocation between these membrane compartments remain largely unclear. Here we investigate the interaction of Shc and Frs2 phosphotyrosine-binding domain-containing adaptor molecules with Ret and their function in redistributing Ret to specialized membrane compartments. We found that engagement of Ret with the Frs2 adaptor results in an enrichment of Ret in lipid rafts and that signal transduction pathways and chemotaxis responses depend on the integrity of such rafts. The competing Shc adaptor did not promote Ret translocation to equivalent domains, and Shc-mediated effects were less affected by disruption of lipid rafts. However, by expressing a chimeric Shc protein that localizes to lipid rafts, we showed that biochemical signaling downstream of Ret resembled that of Ret signaling via Frs2. We have identified a previously unknown mechanism in which phosphotyrosine-binding domain-containing adaptors, by means of relocating Ret receptor complexes to lipid rafts, segregate diverse signaling and cellular functions mediated by Ret. These results reveal the existence of a novel mechanism that could, by subcellular relocation of Ret, work to amplify ligand gradients during chemotaxis.  相似文献   

9.
While investigating the mechanism of action of the novel antitumor drug Aplidin, we have discovered a potent and novel cell-killing mechanism that involves the formation of Fas/CD95-driven scaffolds in membrane raft clusters housing death receptors and apoptosis-related molecules. Fas, tumor necrosis factor-receptor 1, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2/death receptor 5 were clustered into lipid rafts in leukemic Jurkat cells following Aplidin treatment, the presence of Fas being essential for apoptosis. Preformed membrane-bound Fas ligand (FasL) as well as downstream signaling molecules, including Fas-associated death domain-containing protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid, were also translocated into lipid rafts, connecting death receptor extrinsic and mitochondrial intrinsic apoptotic pathways. Blocking Fas/FasL interaction partially inhibited Aplidin-induced apoptosis. Aplidin was rapidly incorporated into membrane rafts, and drug uptake was inhibited by lipid raft disruption. Actin-linking proteins ezrin, moesin, RhoA, and RhoGDI were conveyed into Fas-enriched rafts in drug-treated leukemic cells. Disruption of lipid rafts and interference with actin cytoskeleton prevented Fas clustering and apoptosis. Thus, Aplidin-induced apoptosis involves Fas activation in both a FasL-independent way and, following Fas/FasL interaction, an autocrine way through the concentration of Fas, membrane-bound FasL, and signaling molecules in membrane rafts. These data indicate a major role of actin cytoskeleton in the formation of Fas caps and highlight the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in apoptosis, acting as concentrators of death receptors and downstream signaling molecules and as the linchpin from which a potent death signal is launched.  相似文献   

10.
Cholesterol depletion has been shown to increase mitogen-activated protein kinase activation in response to stimulation with epidermal growth factor (EGF) (Furuchi, T., and Anderson, R. G. W. (1998) J. Biol. Chem. 273, 21099-21104). However, the underlying mechanisms are unknown. We show that cholesterol depletion increases EGF binding, whereas cholesterol loading lowers EGF binding. Based on binding analyses, we demonstrate that the observed changes in EGF binding are caused by alterations in the number of EGF receptors available for ligand binding, whereas the affinity of the receptor for EGF remains unaltered. We also show by immunofluorescence that in unstimulated cells the EGF receptor is localized in non-caveolar lipid rafts containing the ganglioside GM1 and that patching of these rafts by cholera toxin B-chain causes co-patching of EGF receptors. Experiments with solubilization in different detergents at 4 degrees C show that the association of the EGF receptor with these rafts is sensitive to Triton X-100 extraction but insensitive to extraction with another non-ionic detergent, Brij 58. Furthermore, experiments with cholesterol-depleted cells show that the association is cholesterol-dependent. We propose that non-caveolar lipid rafts function as negative regulators of EGF receptor signaling by sequestering a fraction of the EGF receptors in a state inaccessible for ligand binding.  相似文献   

11.
Lipid rafts: bringing order to chaos   总被引:27,自引:0,他引:27  
Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts have a distinctive protein and lipid composition, all rafts do not appear to be identical in terms of either the proteins or the lipids that they contain. A variety of proteins, especially those involved in cell signaling, have been shown to partition into lipid rafts. As a result, lipid rafts are thought to be involved in the regulation of signal transduction. Experimental evidence suggests that there are probably several different mechanisms through which rafts control cell signaling. For example, rafts may contain incomplete signaling pathways that are activated when a receptor or other required molecule is recruited into the raft. Rafts may also be important in limiting signaling, either by physical sequestration of signaling components to block nonspecific interactions, or by suppressing the intrinsic activity of signaling proteins present within rafts. This review provides an overview of the physical characteristics of lipid rafts and summarizes studies that have helped to elucidate the role of lipid rafts in signaling via receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

12.
The EGF receptor is a transmembrane receptor tyrosine kinase that is enriched in lipid rafts. Subdomains I, II and III of the extracellular domain of the EGF receptor participate in ligand binding and dimer formation. However, the function of the cysteine-rich subdomain IV has not been elucidated. In this study, we analyzed the role of the membrane-proximal portion of subdomain IV in EGF binding and signal transduction. A double Cys-->Ala mutation that breaks the most membrane-proximal disulfide bond (Cys600 to Cys612), ablated high affinity ligand binding and substantially reduced signal transduction. A similar mutation that breaks the overlapping Cys596 to Cys604 disulfide had little effect on receptor function. Mutation of residues within the Cys600 to Cys612 disulfide loop did not alter the ligand binding or signal transducing activities of the receptor. Despite the fact that the C600,612A EGF receptor was significantly impaired functionally, this receptor as well as all of the other receptors with mutations in the region of residues 596 to 612 localized normally to lipid rafts. These data suggest that the disulfide-bonded structure of the membrane-proximal portion of the EGF receptor, rather than its primary sequence, is important for EGF binding and signaling but is not involved in localizing the receptor to lipid rafts.  相似文献   

13.
Receptor-mediated endocytosis is used by a number of viruses and toxins to gain entry into cells. Some have evolved to use specific lipids in the plasma membrane as their receptors. They include bacterial toxins such as Shiga and Cholera toxin and viruses such as mouse polyoma virus and simian virus 40. Through multivalent binding to glycosphingolipids, they induce lipid clustering and changes in membrane properties. Internalization occurs by unusual endocytic mechanisms involving lipid rafts, induction of membrane curvature, trans-bilayer coupling, and activation of signaling pathways. Once delivered to early endosomes, they follow diverse intracellular routes to the lumen of the ER, from which they penetrate into the cytosol. The role of the lipid receptors is central in these well-studied processes.  相似文献   

14.
15.
Lipid rafts/caveolae are found to be essential for insulin-like growth factor (IGF)-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. In 3T3-L1 cells, IGF-1 receptor is located in lipid rafts/caveolae of the plasma membrane and can directly interact with caveolin-1, the major protein component in caveolae. Disruption of lipid rafts/caveolae by depleting cellular cholesterol with cholesterol-binding reagent, beta-methylcyclodextrin or filipin, blocks the IGF-1 receptor signaling in 3T3-L1 preadipocyte. Both hormonal induced adipocyte differentiation and mitotic clonal expansion are inhibited by lipid rafts/caveolae disruption. However, a nonspecific lipid binding reagent, xylazine, does not affect adipocyte differentiation or mitotic clonal expansion. Further studies indicate that lipid rafts/caveolae are required only for IGF-1 receptor downstream signaling and not the activation of receptor itself by ligand. Thus, our results suggest that localization in lipid rafts/caveolae and association with caveolin enable IGF-1 receptor to have a close contact with downstream signal molecules recruited into lipid rafts/caveolae and transmit the signal through these signal molecule complexes.  相似文献   

16.
Fas triggers apoptosis via the caspase cascade when bound to its ligand FasL. In type I cells, Fas is concentrated into the plasma membrane lipid rafts, and these domains are required for the apoptotic signal to occur. In contrast, Fas is excluded from the microdomains in type II cells. We report that the coligation with Fas of the membrane receptor CD28 strongly increases Fas-induced apoptosis in type II T lymphocytes, whereas it has no effect in a type I cell line. The effect of CD28 is independent of its intracellular region and requires the recruitment of the microdomains. Indeed, upon CD28 costimulation, Fas is redistributed in the lipid rafts, and their disruption with a cholesterol chelator abrogates the effect of CD28. The microdomain-mediated cell death amplification does not alter death-induced signaling complex formation and is mediated by the enhancement of the mitochondrial apoptotic pathway. These findings indicate that the sensitivity to Fas-induced apoptosis of type II cells can be amplified in vivo by the recruitment of lipid rafts following interactions between nonapoptotic ligand/receptor pairs during cell-to-cell contacts.  相似文献   

17.
Pike LJ  Casey L 《Biochemistry》2002,41(32):10315-10322
A variety of signal transduction pathways including PI turnover, MAP kinase activation, and PI 3-kinase activation have been shown to be affected by changes in cellular cholesterol content. However, no information is available regarding the locus (or loci) in the pathways that are susceptible to modulation by cholesterol. We report here that depletion of cholesterol with methyl-beta-cyclodextrin increases cell surface (125)I-EGF binding by approximately 40% via a mechanism that does not involve externalization of receptors from an internal pool. Cholesterol depletion also enhances in vivo EGF receptor autophosphorylation 2-5-fold without altering the rate of receptor dephosphorylation. In vitro kinase assays, which are done under conditions where phosphotyrosine phosphatases are inhibited and receptor trafficking cannot occur, demonstrate that treatment with methyl-beta-cyclodextrin leads to an increase in intrinsic EGF receptor tyrosine kinase activity. EGF receptors are localized in cholesterol-enriched lipid rafts but are released from this compartment upon treatment with methyl-beta-cyclodextrin. These data are consistent with the interpretation that localization to lipid rafts partially suppresses the binding and kinase functions of the EGF receptor and that depletion of cholesterol releases the receptor from lipid rafts, relieving the functional inhibition of the receptor. Cholesterol depletion also inhibits EGF internalization and down-regulation of the EGF receptor, and this likely contributes to the enhanced ability of EGF to stimulate downstream signaling pathways such as the activation of MAP kinase.  相似文献   

18.
In response to ligand binding, G protein-coupled receptors undergo phosphorylation and activate cellular internalization machinery. An important component of this process is the concentration of receptors into clusters on the plasma membrane. Aside from organizing the receptor in anticipation of internalization, little is known of the function of ligand-mediated G protein-coupled receptor clustering, which has traditionally been thought of as being a phosphorylation-dependent event prior to receptor internalization. We now report that following receptor activation, the N-formyl peptide receptor (FPR) forms distinct membrane clusters prior to its association with arrestin. To determine whether this clustering is dependent upon receptor phosphorylation, we used a mutant form of the FPR, DeltaST-FPR, which lacks all phosphorylation sites in the carboxyl-terminal domain. We found that activation of the signaling-competent DeltaST-FPR resulted in rapid receptor clustering on the plasma membrane independent of Gi protein activation. This clustering required receptor activation since the D71A mutant receptor, which binds ligand but is incapable of transitioning to an active state, failed to induce receptor clustering. Furthermore we demonstrated that FPR-mediated clustering and signaling were cholesterol-dependent processes, suggesting that translocation of the active receptor to lipid rafts may be required for maximal signaling activity. Finally we showed that FPR stimulation in the absence of receptor phosphorylation resulted in translocation of FPR to GM1-rich clusters. Our results demonstrate for the first time that formation of a clustered activated receptor state precedes receptor phosphorylation, arrestin binding, and internalization.  相似文献   

19.
The adhesion molecule CD58 is natively expressed in both a glycosylphosphatidylinositol (GPI)-anchored form and a transmembrane form. We previously demonstrated that the two isoforms of CD58 are differentially distributed in the cell membrane. The GPI-linked form resides in lipid rafts while the transmembrane form resides outside lipid rafts. Following cross-linking a fraction of transmembrane CD58 redistributes to lipid rafts. It has also been demonstrated that ligand binding to CD58 induces biological functions such as cytokine production and immunoglobulin isotype switching, indicating that cell–cell interactions result in CD58-mediated signal transduction. However, the signaling pathways involved in these activation processes are poorly defined. Here we show for the first time that cross-linking of CD58 induces protein tyrosine phosphorylation of BLNK, Syk and PLCγ, and activation of ERK and Akt/PKB. In addition, we studied how these signaling events relate to the distinct membrane localization of the two isoforms of CD58. We demonstrate that cross-linking of CD58 triggers signaling that is predominantly associated with transmembrane CD58 in nonraft microdomains. Moreover, signaling through transmembrane CD58 does not depend on coexpression of the GPI-linked isoform. Thus, despite the residence of its GPI-anchored isoform in lipid rafts and the translocation of a fraction of its transmembrane isoform to lipid rafts, CD58 signaling is triggered by the transmembrane isoform outside lipid rafts. These findings corroborate signaling outside lipid rafts, as opposed to the established notion that rafts function as essential platforms for signaling.  相似文献   

20.
Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号