首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
It is known that the Na/K-ATPase alpha1 subunit interacts directly with inositol 1,4,5-triphosphate (IP(3)) receptors. In this study we tested whether this interaction is required for extracellular stimuli to efficiently regulate endoplasmic reticulum (ER) Ca(2+) release. Using cultured pig kidney LLC-PK1 cells as a model, we demonstrated that graded knockdown of the cellular Na/K-ATPase alpha1 subunit resulted in a parallel attenuation of ATP-induced ER Ca(2+) release. When the knockdown cells were rescued by knocking in a rat alpha1, the expression of rat alpha1 restored not only the cellular Na/K-ATPase but also ATP-induced ER Ca(2+) release. Mechanistically, this defect in ATP-induced ER Ca(2+) release was neither due to the changes in the amount or the function of cellular IP(3) and P2Y receptors nor the ER Ca(2+) content. However, the alpha1 knockdown did redistribute cellular IP(3) receptors. The pool of IP(3) receptors that resided close to the plasma membrane was abolished. Because changes in the plasma membrane proximity could reduce the efficiency of signal transmission from P2Y receptors to the ER, we further determined the dose-dependent effects of ATP on protein kinase Cepsilon activation and ER Ca(2+) release. The data showed that the alpha1 knockdown de-sensitized the ATP-induced ER Ca(2+) release but not PKCepsilon activation. Moreover, expression of the N terminus of Na/K-ATPase alpha1 subunit not only disrupted the formation of the Na/K-ATPase-IP(3) receptor complex but also abolished the ATP-induced Ca(2+) release. Finally, we observed that the alpha1 knockdown was also effective in attenuating ER Ca(2+) release provoked by angiotensin II and epidermal growth factor.  相似文献   

2.
We have shown that the Na/K-ATPase and Src form a signaling receptor complex. Here we determined how alterations in the amount and properties of the Na/K-ATPase affect basal Src activity and ouabain-induced signal transduction. Several alpha1 subunit knockdown cell lines were generated by transfecting LLC-PK1 cells with a vector expressing alpha1-specific small interference RNA. Although the alpha1 knockdown resulted in significant decreases in Na/K-ATPase activity, it increased the basal Src activity and tyrosine phosphorylation of focal adhesion kinase, a Src effector. Concomitantly it also abolished ouabain-induced activation of Src and ERK1/2. When the knockdown cells were rescued by a rat alpha1, both Na/K-ATPase activity and the basal Src activity were restored. In addition, ouabain was able to stimulate Src and ERK1/2 in the rescued cells at a much higher concentration, consistent with the established differences in ouabain sensitivity between pig and rat alpha1. Finally both fluorescence resonance energy transfer analysis and co-immunoprecipitation assay indicated that the pumping-null rat alpha1 (D371E) mutant could also bind Src. Expression of this mutant restored the basal Src activity and focal adhesion kinase tyrosine phosphorylation. Taken together, the new findings suggest that LLC-PK1 cells contain a pool of Src-interacting Na/K-ATPase that not only regulates Src activity but also serves as a receptor for ouabain to activate protein kinases.  相似文献   

3.
4.
We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.  相似文献   

5.
6.
SEPYLRFamide acts as an inhibitory modulator of acetylcholine (ACh) receptors in Helix lucorum neurones. Ouabain, a specific inhibitor of Na,K-pump, (0.1 mM, bath application) decreased the ACh-induced inward current (ACh-current) and increased the leak current. Ouabain decreased the modulatory SEPYLRFamide effect on the ACh-current. There was a correlation between the effects of ouabain on the amplitude of the ACh-current and on the modulatory peptide effect. Ouabain and SEPYLRFamide inhibited the activity of Helix aspersa brain Na,K-ATPase. Activation of Na,K-pump by intracellular injection of 3 M Na acetate or 3 M NaCl reduced the modulatory peptide effect on the ACh-current. An inhibitor of Na/Ca-exchange, benzamil (25 muM, bath application), and an inhibitor of Ca(2+)-pump in the endoplasmic reticulum, thapsigargin (TG, applied intracellularly), both prevented the effect of ouabain on SEPYLRFamide-mediated modulatory effect. Another inhibitor of Ca(2+)-pump in the endoplasmic reticulum, cyclopiazonic acid (applied intracellularly), did not prevent the effect of ouabain on SEPYLRFamide-mediated modulatory effect. These results indicate that Na,K-pump is responsible for the SEPYLRFamide-mediated inhibition of ACh receptors in Helix neurons. Na/Ca-exchange and intracellular Ca(2+) released from internal pools containing TG-sensitive Ca(2+)-pump are involved in the Na,K-pump pathway for the SEPYLRFamide-mediated inhibition of ACh receptors.  相似文献   

7.
Recent studies have ascribed many non-pumping functions to the Na/K-ATPase. Here, we present experimental evidence demonstrating that over half of the plasma membrane Na/K-ATPase in LLC-PK1 cells is performing cellular functions other than ion pumping. This "non-pumping" pool of Na/K-ATPase, like the pumping pump, binds ouabain. Depletion of either cholesterol or caveolin-1 moves some of the "non-pumping" Na/K-ATPase into the pumping pool. Graded knock-down of the alpha1 subunit of the Na/K-ATPase eventually results in loss of this "non-pumping" pool while preserving the pumping pool. Our prior studies indicate that a loss of the non-pumping pool is associated with a loss of receptor function as evidenced by the failure of ouabain administration to induce the activation of Src and/or ERK. Therefore, our new findings suggest that a substantial amount of surface-expressed Na/K-ATPase, at least in some types of cells, may function as non-canonical ouabain-binding receptors.  相似文献   

8.
Recent studies indicate novel roles for the ubiquitous ion pump, Na,K-ATPase, in addition to its function as a key regulator of intracellular sodium and potassium concentration. We have previously demonstrated that ouabain, the endogenous ligand of Na,K-ATPase, can trigger intracellular Ca2+ oscillations, a versatile intracellular signal controlling a diverse range of cellular processes. Here we report that Na,K-ATPase and inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) form a cell signaling microdomain that, in the presence of ouabain, generates slow Ca2+ oscillations in renal cells. Using fluorescent resonance energy transfer (FRET) measurements, we detected a close spatial proximity between Na,K-ATPase and InsP3R. Ouabain significantly enhanced FRET between Na,K-ATPase and InsP3R. The FRET effect and ouabain-induced Ca2+ oscillations were not observed following disruption of the actin cytoskeleton. Partial truncation of the NH2 terminus of Na,K-ATPase catalytic alpha1-subunit abolished Ca2+ oscillations and downstream activation of NF-kappaB. Ouabain-induced Ca2+ oscillations occurred in cells expressing an InsP3 sponge and were hence independent of InsP3 generation. Thus, we present a novel principle for a cell signaling microdomain where an ion pump serves as a receptor.  相似文献   

9.
Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.  相似文献   

10.
Na,K-ATPase and inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) can form a signaling microdomain that in the presence of ouabain triggers highly regular calcium oscillations. Downstream effects include NF-kappaB activation. Here we report that ankyrin B (Ank-B), expressed in most mammalian cells, plays a pivotal role in the function of the Na,K-ATPase/IP3R signaling microdomain. In studies performed on a monkey kidney cell line, we show that Ank-B co-precipitates with both Na,K-ATPase and IP3R. We identify the N terminus tail of the Na,K-ATPase catalytic subunit and the N-terminal portion 1-604 of the IP3R as novel binding sites for Ank-B. Knockdown of Ank-B with small interfering RNA reduced the expression of Ank-B to 15-30%. This down-regulation of Ank-B attenuated the interaction between Na,K-ATPase and IP3R, reduced the number of cells responding to pm doses of ouabain with calcium oscillations, altered the calcium oscillatory pattern, and abolished the ouabain effect on NF-kappaB. In contrast, Ank-B down-regulation had no effect on the ion transporting function of Na,K-ATPase and no effect on the distribution and apparent mobility of Na,K-ATPase in the plasma membrane.  相似文献   

11.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.  相似文献   

12.
The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.  相似文献   

13.
We have demonstrated that ouabain regulates protein trafficking of the Na/K-ATPase α1 subunit and NHE3 (Na/H exchanger, isoform 3) via ouabain-activated Na/K-ATPase signaling in porcine LLC-PK1 cells. To investigate whether this mechanism is species-specific, ouabain-induced regulation of the α1 subunit and NHE3 as well as transcellular (22)Na(+) transport were compared in three renal proximal tubular cell lines (human HK-2, porcine LLC-PK1, and AAC-19 originated from LLC-PK1 in which the pig α1 was replaced by ouabain-resistant rat α1). Ouabain-induced inhibition of transcellular (22)Na(+) transport is due to an ouabain-induced redistribution of the α1 subunit and NHE3. In LLC-PK1 cells, ouabain also inhibited the endocytic recycling of internalized NHE3, but has no significant effect on recycling of endocytosed α1 subunit. These data indicated that the ouabain-induced redistribution of the α1 subunit and NHE3 is not a species-specific phenomenon, and ouabain-activated Na/K-ATPase signaling influences NHE3 regulation.  相似文献   

14.
In the present study we used LLC-PK1 cells, a porcine renal proximal tubular cell line, to investigate whether PI3 kinase activation was involved in the anti-apoptotic effect of ouabain, a specific inhibitor of Na,K-ATPase. Apoptosis was induced by actinomycin D (Act D, 5 microM) and assessed by appearance of hypodiploid nuclei and DNA fragmentation. Ouabain attenuated Act D-induced apoptotic response in a dose-dependent manner. Incubation in a low K(+) medium (0.1 mM) which is another way to decrease Na,K-ATPase activity also had anti-apoptotic effect. Both ouabain and low K(+) medium increased the PI3 kinase activity in p85 immunoprecipitates. Ouabain, as well as incubation in the low K(+) medium, also increased the phosphorylation of Akt. Inhibition of PI3 kinase by either wortmannin or LY294002 reversed the cytoprotective effect of ouabain. These data together indicate that inhibition of Na,K-ATPase activates PI3 kinase in LLC-PK1 cells which could then exert the cytoprotective effect.  相似文献   

15.
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3 mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR845 and EGFR1068; (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3 mM ammonia it does not appear until after 12 h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.  相似文献   

16.
17.
Up-regulation of BDNF (brain-derived neurotrophic factor) has been suggested to contribute to the action of antidepressants. However, it is unclear whether chronic treatment with antidepressants may influence acute BDNF signaling in central nervous system neurons. Because BDNF has been shown by us to reinforce excitatory glutamatergic transmission in cultured cortical neurons via the phospholipase-gamma (PLC-gamma)/inositol 1,4,5-trisphosphate (IP3)/Ca2+ pathway (Numakawa, T., Yamagishi, S., Adachi, N., Matsumoto, T., Yokomaku, D., Yamada, M., and Hatanaka, H. (2002) J. Biol. Chem. 277, 6520-6529), we examined in this study the possible effects of pretreatment with antidepressants on the BDNF signaling through the PLC-gamma)/IP3/Ca2+ pathway. Furthermore, because the PLC-gamma/IP3/Ca2+ pathway is regulated by sigma-1 receptors (Hayashi, T., and Su, T. P. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 491-496), we examined whether the BDNF signaling is modulated by sigma-1 receptors (Sig-1R). We found that the BDNF-stimulated PLC-gamma activation and the ensued increase in intracellular Ca2+ ([Ca2+]i) were potentiated by pretreatment with imipramine or fluvoxamine, so was the BDNF-induced glutamate release. Furthermore, enhancement of the interaction between PLC-gamma and TrkB (receptor for BDNF) after imipramine pretreatment was observed. Interestingly, BD1047, a potent Sig-1R antagonist, blocked the imipramine-dependent potentiation on the BDNF-induced PLC-gamma activation and glutamate release. In contrast, overexpression of Sig-1R per se, without antidepressant pretreatment, enhances BDNF-induced PLC-gamma activation and glutamate release. These results suggest that antidepressant pretreatment selectively enhance the BDNF signaling on the PLC-gamma/IP3/Ca2+ pathway via Sig-1R, and that Sig-1R plays an important role in BDNF signaling leading to glutamate release.  相似文献   

18.
Calcium (Ca2+) release from the endoplasmic reticulum (ER) controls numerous cellular functions including proliferation, and is regulated in part by inositol 1,4,5-trisphosphate receptors (IP3Rs). IP3Rs are ubiquitously expressed intracellular Ca2+-release channels found in many cell types. Although IP3R-mediated Ca2+ release has been implicated in cellular proliferation, the biochemical pathways that modulate intracellular Ca2+ release during cell cycle progression are not known. Sequence analysis of IP3R1 reveals the presence of two putative phosphorylation sites for cyclin-dependent kinases (cdks). In the present study, we show that cdc2/CyB, a critical regulator of eukaryotic cell cycle progression, phosphorylates IP3R1 in vitro and in vivo at both Ser(421) and Thr(799) and that this phosphorylation increases IP3 binding. Taken together, these results indicate that IP3R1 may be a specific target for cdc2/CyB during cell cycle progression.  相似文献   

19.
Jung J  Kim M  Choi S  Kim MJ  Suh JK  Choi EC  Lee K 《Cellular signalling》2006,18(11):2033-2040
We previously reported that phosphorylated cofilin-triosephosphate isomerase (TPI) complex interacts with Na,K-ATPase and enhances the pump activity through the phosphorylation of cofilin via Rho-mediated signaling pathway. In this study, we tested the hypothesis that the dephosphorylation of cofilin may be induced through Na,K-ATPase inhibition by ouabain. The phosphorylation level of cofilin by ouabain which decreases in a time- and dose-dependent manner in various human cell lines, remains unchanged by pretreatment with Src inhibitor, PP2; epidermal growth factor receptor (EGFR) inhibitor, AG1478; Raf-1 kinase (Raf) inhibitor, GW5074; and ERK kinase (MEK) inhibitor, PD98059, and by transfection of Ras dominant negative mutant (RasN17). This suggests that ouabain dephosphorylates cofilin through the Src/EGFR/Ras/Raf/MEK pathway. Ouabain activates Ras/Raf/MEK pathway, but down-regulates Rho kinase (ROCK)/LIM kinase (LIMK)/cofilin pathway, implying that there may be a cross-talk by ouabain between the Ras/Raf/MEK and the ROCK/LIMK/cofilin pathways. Immunofluorescence and flow cytometry suggest that ouabain-induced active form of cofilin may be involved in cytoskeletal reorganization and cell volume regulation. Thus, these findings demonstrate a new molecular mechanism for the dephosphorylation of cofilin through the inhibition of Na,K-ATPase by ouabain.  相似文献   

20.
At fertilization, eggs undergo a cytoplasmic free Ca2+ rise, which is necessary for stimulating embryogenesis. In starfish eggs, studies using inhibitors designed against vertebrate proteins have shown that this Ca2+ rise requires an egg Src family kinase (SFK) that directly or indirectly activates phospholipase C-gamma (PLC-gamma) to produce IP3, which triggers Ca2+ release from the egg's endoplasmic reticulum (ER) [reviewed in Semin. Cell Dev. Biol. 12 (2001) 45]. To examine in more detail the endogenous factors in starfish eggs that are required for Ca2+ release at fertilization, an oocyte cDNA encoding PLC-gamma was isolated from the starfish Asterina miniata. This cDNA, designated AmPLC-gamma, encodes a protein with 49% identity to mammalian PLC-gamma1. A 58-kDa Src family kinase interacted with recombinant AmPLC-gamma Src homology 2 (SH2) domains in a specific, fertilization-responsive manner. Immunoprecipitations of sea urchin egg PLC-gamma using an affinity-purified antibody directed against AmPLC-gamma revealed fertilization-dependent phosphorylation of PLC-gamma. Injecting starfish eggs with the tandem SH2 domains of AmPLC-gamma (which inhibits PLC-gamma activation) specifically inhibited Ca2+ release at fertilization. These results indicate that an endogenous starfish egg PLC-gamma interacts with an egg SFK and mediates Ca2+ release at fertilization via a PLC-gamma SH2 domain-mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号