首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to assess the non-carcinogenic human health risk of heavy metals through the ingestion of locally grown and commonly used vegetables viz. Raphanus sativus (root vegetable), Daucus carota (root vegetable), Benincasa hispida (fruit vegetable) and Brassica campestris leaves (leafy vegetable) in a semi-urbanized area of Haryana state, India. Heavy metal quantification of soil and vegetable samples was done using flame atomic absorption spectrophotometer. Lead, cadmium and nickel concentration in vegetable samples varied in range of 0.12–6.54 mg kg?1, 0.02–0.67 mg kg?1 and <0.05–0.41 mg kg?1, respectively. Cadmium and lead concentration in some vegetable samples exceeded maximum permissible limit given by World Health Organization/Food and Agriculture Organization and Indian standards. Much higher concentrations of Pb (40–190.5 mg kg?1), Cd (0.56–9.85 mg kg-1) and Ni (3.21–45.87 mg kg?1) were reported in corresponding vegetable fields’ soils. Correlation analysis revealed the formation of three primary clusters, i.e. Cu–Cd, Cd–Pb and Ni–Zn in vegetable fields’ soils further supported by cluster analysis and principal component analysis. Bioconcentration factor revealed that heavy metals’ uptake was more by leafy vegetable than root and fruit vegetables. Hazard index of all the vegetables was less than unity; thus, the ingestion of these vegetables is unlikely to pose health risks to the target population.  相似文献   

2.
To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.  相似文献   

3.
Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg−1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg−1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.  相似文献   

4.
Cadmium (Cd) pollution in the suburbs of Tianjin, China, was monitored over a period of several years. During this period, 193 soil, 120 vegetable, and 71 rice samples from four suburban districts were analyzed. The Cd content of the soil samples was considerably higher than the background level. Some soil samples from the Dongli and Xiqing districts were even in the S5 (Heavy) and S6 (Severe) pollution levels, with a maximum concentration of 5.20 mg kg?1. The Cd contents of vegetable and rice samples were found to be in the F3 (Intermediate) and F4 (Heavy) pollution levels. Vegetables showed differing abilities to accumulate Cd and can be ranked in the following order: leaf vegetables > rootstalk vegetables > fruit vegetables. The average Cd level in different vegetables ranged from 0.0064 to 0.132 mg kg?1, and a positive relationship (p < 0.05) was found between soil and plant Cd contents. Chinese cabbage and celery were more likely to pose risks to human health, as shown by their higher hazardous quotient (HQ) values. The soil Cd pollution in Tianjin seemed primarily to be caused by wastewater irrigation and the application of sewage sludge to farmlands. Other possible sources include the use of phosphate fertilizer and atmospheric deposition.  相似文献   

5.
Shengting Rao  Jia Fang  Keli Zhao 《Phyton》2022,91(12):2669-2685

Soil is an essential resource for agricultural production. In order to investigate the pollution situation of heavy metals in the soil-crop system in the e-waste dismantling area, the crop and soil samples (226 pairs, including leaf vegetables, solanaceous vegetables, root vegetables, and fruits) around the e-waste dismantling area in southeastern Zhejiang Province were collected. The concentrations of Cd, Cu, Pb, and Cr were determined. The average concentrations of Cd, Cu, Pb, and Cr in soils were 0.94, 107.79, 80.28, and 78.14 mg kg-1, respectively, and their corresponding concentrations in crops were 0.024, 0.7, 0.041, and 0.06 mg kg-1, respectively. The transfer capacity of leaf vegetables was significantly higher than that of non-leaf vegetables, and the accumulation of four heavy metals in crops tended to be Cd > Cu > Cr/Pb. The pollution index’s results revealed that the soil pollution degree under different land uses ranked as root vegetables soil > leaf vegetables soil > solanaceous vegetables soil > fruit soil. The carcinogenic and non-carcinogenic risks of heavy metal exposure were ranked as food intake > accidental ingestion > dermal contact > inhalation. The comprehensive non-carcinogenic risk was ranked as Cr > Cd > Pb/Cu. Our results could be used to provide useful information for further crop cultivation layout in the study area, which can guarantee the local residents’ health and food safety.

  相似文献   

6.
Nonoilseed sunflower (Helianthus annuus L.) is naturally higher in cadmium (Cd) than many other grain crops. Because raising soil pH usually depresses Cd uptake by most species, a study was designed to determine if application of agricultural limestone to neutralize soil acidity would decrease Cd uptake by sunflower plants grown on different soils in the production area of North Dakota. The field experiments were conducted at 3 locations in 1991 and 2 locations in 1992. At each site, limestone was applied to bring soil pH to 6.5–7.0, or an additional 45 Mg ha-1 more limestone was applied, and these two treatments were compared to no-lime control. Commercial nonoilseed hybrid 954 was planted in these experiments. The rapid short-term lime-soil reaction occurred in first 12 weeks following limestone application. Mean kernel Cd concentration for each treatment varied from 0.35 to 1.45 mg kg-1 DW in the first year of the experiments, and from 0.37 to 1.23 mg kg-1 DW in the experiments of 1992 across all locations. Large variations in kernel Cd levels between locations were obtained. There were no significant differences among control and limestone treatments for kernel Cd, seedling leaf Cd and diagnostic leaf Cd within each location, respectively. In regression analysis, we found that kernel Cd level correlated with diagnostic leaf Cd concentration in each treatment, but poor correlations were obtained among other variables. These results indicated that limestone application did not reduce Cd uptake and transfer to kernels of sunflower, in contrast with most species studied.  相似文献   

7.
The presence of Cadmium (Cd) in the agricultural soils affects horticultural cultivars and constrains the crop productivity. A pot experiment was performed using five cultivars of mustard (Brassica juncea L.) to evaluate the difference in their response to Cd toxicity under greenhouse conditions. The pots containing reconstituted soil were supplied with different concentration of CdCl2 (0, 25, 50, 100 or 150 mg Cd kg−1 soil). Increasing concentration of Cd in the soil resulted in decreased growth, photosynthesis and yield. Maximum significant reduction in growth, photosynthesis and yield were observed with 150 mg Cd kg−1 soil in all the cultivars. Our results indicate that the cultivar Alankar is found to be more tolerant to Cd stress, recording higher plant dry mass, net photosynthesis rate, associated with high antioxidant activity and low Cd content in the plant leaves and thus less oxidative damage. Cultivar RH30 experienced maximum damage in terms of reduction in growth, photosynthesis, yield characteristics and oxidative damage and emerged as sensitive cultivar. The data of tolerance index of Alankar were found to be higher among all tested mustard cultivars which indicate its higher tolerance to Cd. Better coordination of antioxidants protected Alankar from Cd toxicity, whereas lesser antioxidant activity in RH30 resulted in maximum damage. Cultivars of mustard were ranked with respect to their tolerance to Cd: Alankar > Varuna > Pusa Bold > Sakha > RH30, respectively.Key words: antioxidants, cadmium, growth, mustard cultivars, photosynthesis, stress, yield  相似文献   

8.
Cadmium (Cd) concentration in field-grown tobacco leaves usually ranges from < 0.5 to 5 mg Cd kg–1 dry matter (DM). Reducing bioavailability of soil Cd by adding amendments to the soil could be suitable to mitigate Cd uptake by tobacco plants. However, little is known on the effect of inorganic amendments on agricultural soils with low Cd concentrations. Therefore, we performed a pot experiment with tobacco plants that were grown during 56 days in two neutral to alkaline agricultural soils with low total Cd concentrations (soil 1 = 0.4, soil 2 = 0.7 mg kg–1). Both soils were amended or not with 1 or 5% of sepiolite, zeolite, hydroxyapatite and apatite II™. Major and trace elements were measured in mid-stalk position leaves. Soil metals were measured in a DTPA soil extraction to assess the effect of the amendments on metal bioavailability. Some amendments significantly reduced Cd concentration in tobacco leaves, but the effect differed between the two soils tested. In soil 1, the use of zeolite at the 1% dose was the most efficient, reducing the average Cd concentration from 0.6 to 0.4 mg kg–1. In soil 2, the 5% hydroxyapatite treatment led to the maximal reduction in Cd concentration (50%), with an average final Cd concentration in leaves of 0.7 mg kg–1 (control: 1.5 mg kg–1). There was a dose effect for some amendments in soil 2 (containing more Cd), suggesting a reduced efficiency of the amendment at the lowest addition rate. DTPA extractable Cd and Zn measured at the end of the pot experiment were correlated to the metal concentrations in tobacco leaves suggesting that (1) the reduction in leaf Cd concentration was due to a reduction in metal availability to tobacco and (2) DTPA may be a suitable extractant to estimate Cd availability to tobacco plants in these two soils. In addition, a batch experiment was performed with the same soils to test a larger number of amendments, including the four tested in the pot experiment. Results were compared to those of the pot experiment to assess whether a batch experiment may predict the efficiency of an amendment on a given soil. It gave results compatible with those from the pot experiment except for the sepiolite and highlighted the broad range of potential amendments available for heavy metal remediation in crop plants.  相似文献   

9.
Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R 2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R 2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable.  相似文献   

10.
Application of phosphorus (P) fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14–90 Olsen-P mg kg−1) were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4–6%), total soil P increased from 540 mg kg−1 to 904 mg kg−1, Olsen-P ranged from 3.4 mg kg−1 to 30.7 mg kg−1, and CaCl2-P increased from less than 0.1 mg kg−1 to 0.66 mg kg−1 under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R 2 = 0.91–0.98). K (binding energy) and Q m (P sorption maximum) decreased, whereas DPS (degree of phosphorus sorption) increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg−1. Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk.  相似文献   

11.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

12.
Increasing contamination and higher enrichment ratio of non-essential heavy metal cadmium (Cd) induce various toxic responses in plants when accumulated above the threshold level. These effects and growth responses are genotype and Cd level dependent. An experiment was conducted to analyze the effect of Cd toxicity in Brassica juncea [L] Czern and Coss by selecting its two varieties Varuna and RH-30. Cadmium (0, 25, 50 or 100 mg CdCl2 kg−1 of soil) fed to soil decreased the values of growth characteristics, activity of nitrate reductase and leaf water potential, whereas activities of antioxidant enzymes and proline content increased with the increasing concentration of Cd, observed at 30 and 60 day stages of growth, in both the varieties. Moreover, Cd uptake by the roots was higher in RH-30 than Varuna. Also the activity of antioxidant enzymes and proline accumulation were higher in Varuna with increasing soil level of Cd. Out of the two varieties, Varuna was more tolerant than RH-30 to Cd stress.  相似文献   

13.
Bolan  N. S.  Adriano  D. C.  Duraisamy  P.  Mani  A.  Arulmozhiselvan  K. 《Plant and Soil》2003,250(1):83-94
The effect of phosphate on the surface charge and cadmium (Cd) adsorption was examined in seven soils that varied in their variable-charge components. The effect of phosphate on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. Addition of phosphate, as KH2PO4, increased the pH, negative charge and Cd adsorption by the soils. Of the seven soils examined, the three allophanic soils (i.e., Egmont, Patua and Ramiha) exhibited greater increases in phosphate-induced pH, negative charge and Cd2+ adsorption over the other four non-allophanic soils (i.e., Ballantrae, Foxton, Manawatu ad Tokomaru). Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of phosphate effectively reduced the phytotoxicity of Cd. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of phosphate decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fraction in soil. The phosphate-induced alleviation of Cd phytotoxicity can be attributed primarily to Cd immobilization due to increases in pH and surface charge.  相似文献   

14.
重金属镉(Cd)在土壤-蔬菜系统中转移方程的建立是农田Cd污染控制和风险评估的关键.本研究通过调查湖南省攸县745个土壤-蔬菜样品Cd含量,应用转移方程、敏感性分布曲线(SSD)和多元回归方法分析不同类别蔬菜Cd累积特征和影响因素,预测不同土壤条件下蔬菜Cd含量并推导相应土壤Cd风险阈值.结果表明: 叶菜对Cd胁迫较根菜敏感;土壤pH、土壤总Cd和土壤有机质(SOM)是影响蔬菜Cd富集的3个主要因子;转移方程对叶菜和根菜的解释程度分别为54.2%和69.1%.土壤Cd风险阈值随土壤pH和SOM的增加而增加,根菜在严重酸化土壤区Cd累积风险较高.当前国家土壤环境质量标准对于严重酸化、有机质含量较低的土壤过于宽泛.  相似文献   

15.
镉在土壤-蔬菜-昆虫食物链的传递特征   总被引:4,自引:0,他引:4  
通过温室盆栽试验,以两种蔬菜(小白菜和苋菜)和一种昆虫(斜纹夜蛾)幼虫为对象,研究了重金属镉(Cd)在土壤-蔬菜-昆虫食物链的传递特征以及两种蔬菜中Cd化学形态分布特征.结果表明: 随着土壤Cd处理浓度的升高,两种蔬菜生物量均显著下降(P<0.05),而其各器官中的Cd含量均显著上升(P<0.05),两种蔬菜各器官Cd含量大小顺序为苋菜茎>根>叶,小白菜茎>叶>根;食用小白菜和苋菜的斜纹夜蛾幼虫体内Cd含量随着土壤Cd处理含量的升高而升高,最高分别为36.7和46.3 mg·kg-1,但粪便中Cd含量分别高达190.0和229.8 mg·kg-1,表明斜纹夜蛾幼虫食入的Cd大部分通过粪便排泄出体外.小白菜和苋菜各器官Cd化学形态均以氯化钠提取态为主(>70%),其次为无机态和有机水溶态Cd(乙醇提取态和去离子水提取态),而不溶性Cd磷酸盐(醋酸提取态)、草酸盐结合态Cd(盐酸提取态)和残渣态均极低,这有利于重金属Cd在食物链中传递.斜纹夜蛾幼虫通过粪便排泄大量Cd以缓解Cd对自身的毒害,可有效限制Cd向下一营养级传递.小白菜和苋菜对Cd的富集性均较高,不宜在Cd高污染土壤种植.  相似文献   

16.
Cadmium (Cd) accumulation in edible crops is undesirable due to its hazardous influences on human health. The objectives of this study were: i) to evaluate the spatial variability of grain Cd and its relationships with soil properties in 4000 km2 wheat farms; ii) to evaluate the effect of wheat cultivar on the soil properties vs. grain Cd relationships. A number of 255 soil (0–20 cm) and grain samples were taken and Cd concentrations in grain samples and some soil properties were measured. Grain Cd concentrations in 95 percent of the samples exceeded the threshold of 0.2 mg kg?1. Durum wheat had more potential to accumulate Cd in grain (0.76 mg kg?1) than bread (0.69 mg kg?1). There was significant (p < 0.01) correlation between grain Cd and organic carbon (r = 0.66), CEC (r = 0.77) and DTPA-extractable Cd (p < 0.05) (r = 0.57) of the soils. Greater Pearson coefficient values for durum wheat showed that, in the studied calcareous soils, organic carbon, CEC, Cd-DTPA had more effects on durum wheat than bread wheat cultivar. The obtained Kriging map of grain Cd identified three hotspots at the east (durum wheat cultivation), the west (intensive irrigated wheat farms), and south (wheat farms around petrochemical industries) of the region. Agricultural mismanagement due to overusing P-fertilizers increased Cd concentration in the topsoils and grains of wheat farms in the study area.  相似文献   

17.
Significant cadmium (Cd) contamination In soil and rice has been discovered in Mae Sot, Tak province, Thailand where the rice-based agricultural systems are established in the vicinity of a zinc mine. The prolonged consumption of Cd contaminated rice has potential risks to public health and health impacts of Cd exposed populations in Mae Sot have been demonstrated. The Thai government has prohibited rice cultivation in the area as an effort to prevent further exposure. Phytoextraction, the use of plants to remove contaminants from soil, is a potential option to manage Cd–contaminated areas. However, successful phytoextraction depends on first identifying effective hyperaccumulator plants appropriate for local climatic conditions. Five sampling sites at Padaeng Zinc mine, Tak province were selected to collect plant and soil samples. Total Cd and Zn concentrations in sediments or soils were approximately 596 and 20,673 mg kg?1 in tailing pond area, 543 and 20,272 mg kg?1 in open pit area, 894 and 31,319 mg kg?1 in stockpile area, 1,458 and 57,012 mg kg?1 in forest area and 64 and 2,733 mg kg?1 in Cd contaminated rice field. Among a total of 36 plant species from 16 families, four species (Chromolaena odoratum, Gynura pseudochina, Impatiens violaeflora and Justicia procumbens) could be considered as Cd hyperaccumulators since their shoot Cd concentrations exceeded 100 mg Cd kg?1 dry mass and they showed a translocation factor > 1. Only Justicia procumbens could be considered as a Zn hyperaccumulator (Zn concentration in its shoot more than 10,000 mg Zn kg?1 dry mass with the translocation factor > 1).  相似文献   

18.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

19.
Kim  C.-G.  Bell  J. N. B.  Power  S. A. 《Plant and Soil》2003,257(2):443-449
The effects of Cd on the growth and distribution of Cd and mineral nutrients within plant tissues were investigated for Pinus sylvestris L. seedlings grown in mineral forest soil with increasing levels of Cd addition (0–100 mg kg–1). Approximately 20% of added Cd was found to be extractable from sandy loam forest soil. Root growth was less affected by Cd than shoot growth, which showed a significant reduction in the 100 mg Cd kg–1 treatment. Cadmium accumulated in roots up to 325 mg kg–1. Decreased concentrations of K in needles and Ca in stems with increasing Cd levels suggest a disturbance of mineral nutrition as a result of Cd addition.  相似文献   

20.
The accumulation of copper, zinc and cadmium inA. yokoscense collected from Ashio (copper-contaminated area), Bandai (zinc- and cadmium-contaminated area) and Tama (non-contaminated area), has been investigated. Copper and zinc were accumulated most highly in the root, whilst cadmium was accumulated more in the leaf. The root ofA. yokoscense growing in areas contaminated with metals contained maximum amounts of Cu (5, 989 mg. kg−1 dry weight) and Zn (6,384 mg.kg−1 dry weight), while in the leaf from the Bandai area 164.8 mg Cd.kg−1 dry weight was accumulated. These amounts are far greater than those found inA yokoscense growing on the non-metalliferous habitat (Tama). Twenty five times more zinc and three times more cadmium were found in the dead leaf than in the living leaf. InA. yokoscense growing on soils containing more than 1,000 mg Cu or Zn.kg−1 dry weight, the uptake of copper by the root increased considerably with increasing copper content in the soils, while the uptake of zinc increased only slightly compared with the increase of zinc in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号