首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
The goal of this study was to determine quantitative relationships between electrophysiologic parameters and the propensity of cardiac tissue to undergo atrial fibrillation. We used a computational model to simulate episodes of fibrillation, which we then characterized in terms of both their duration and the population dynamics of the electrical waves which drove them. Monte Carlo sampling revealed that episode durations followed an exponential decay distribution and wave population sizes followed a normal distribution. Half-lives of reentrant episodes increased exponentially with either increasing tissue area to boundary length ratio (A/BL) or decreasing action potential duration (APD), resistance (R) or capacitance (C). We found that the qualitative form of fibrillatory activity (e.g., multi-wavelet reentry (MWR) vs. rotors) was dependent on the ratio of resistance and capacitance to APD; MWR was reliably produced below a ratio of 0.18. We found that a composite of these electrophysiologic parameters, which we term the fibrillogenicity index (Fb = A/(BL*APD*R*C)), reliably predicted the duration of MWR episodes (r2 = 0.93). Given that some of the quantities comprising Fb are amenable to manipulation (via either pharmacologic treatment or catheter ablation), these findings provide a theoretical basis for the development of titrated therapies of atrial fibrillation.  相似文献   

2.
目的:利用HL-1细胞建立快速起搏模型,对心房颤动(atrial fibrillation,AF)早期的重构现象进行初步研究。方法:培养HL-1细胞,建立快速电场刺激起搏细胞模型,利用全细胞膜片钳技术记录刺激前后HL-1细胞的动作电位周期,透射电镜观察细胞超微结构的变化。结果:将细胞接种于培养皿中,72 h后细胞呈融合状态,全细胞膜片钳记录培养HL-1细胞及经电场刺激(600次/min,1 V/cm)24 h后的心房肌细胞的动作电位周期,动作电位周期分别为106 ms,45 ms,刺激前后差异有统计学意义(P0.05)。透射电镜观察到刺激后HL-1细胞超微结构发生去分化改变。结论:经快速起搏24 h后,HL-1细胞发生了电及结构重构;利用HL-1细胞建立快速起搏的房颤模型,可以对房颤早期的重构机制进行研究。  相似文献   

3.
Persistent atrial fibrillation (PeAF) in humans is characterized by shortening of action potential duration (APD) and attenuation of APD rate-adaptation. However, the quantitative influences of particular ionic current alterations on rate-dependent APD changes, and effects on patterns of reentry in atrial tissue, have not been systematically investigated. Using mathematical models of human atrial cells and tissue and performing parameter sensitivity analysis, we evaluated the quantitative contributions to action potential (AP) shortening and APD rate-adaptation of ionic current remodeling seen with PeAF. Ionic remodeling in PeAF was simulated by reducing L-type Ca2+ channel current (ICaL), increasing inward rectifier K+ current (IK1) and modulating five other ionic currents. Parameter sensitivity analysis, which quantified how each ionic current influenced APD in control and PeAF conditions, identified interesting results, including a negative effect of Na+/Ca2+ exchange on APD only in the PeAF condition. At high pacing rate (2 Hz), electrical remodeling in IK1 alone accounts for the APD reduction of PeAF, but at slow pacing rate (0.5 Hz) both electrical remodeling in ICaL alone (-70%) and IK1 alone (+100%) contribute equally to the APD reduction. Furthermore, AP rate-adaptation was affected by IKur in control and by INaCa in the PeAF condition. In a 2D tissue model, a large reduction (-70%) of ICaL becomes a dominant factor leading to a stable spiral wave in PeAF. Our study provides a quantitative and unifying understanding of the roles of ionic current remodeling in determining rate-dependent APD changes at the cellular level and spatial reentry patterns in tissue.  相似文献   

4.
Theoretical and experimental studies have shown that restitution of the cardiac action potential (AP) duration (APD) plays a major role in predisposing ventricular tachycardia to degenerate to ventricular fibrillation, whereas its role in atrial fibrillation is unclear. We used the Courtemanche human atrial cell model and the Luo-Rudy guinea pig ventricular model to compare the roles of electrical restitution in destabilizing spiral wave reentry in simulated two-dimensional homogeneous atrial and ventricular tissue. Because atrial AP morphology is complex, we also validated the usefulness of effective refractory period (ERP) restitution. ERP restitution correlated best with APD restitution at transmembrane potentials greater than or equal to -62 mV, and its steepness was a reliable predictor of spiral wave phenotype (stable, meandering, hypermeandering, and breakup) in both atrial and ventricular tissue. Spiral breakup or single hypermeandering spirals occurred when the slope of ERP restitution exceeded 1 at short diastolic intervals. Thus ERP restitution, which is easier to measure clinically than APD restitution, is a reliable determinant of spiral wave stability in simulated atrial and ventricular tissue.  相似文献   

5.
Atrial arrhythmias, primarily atrial fibrillation, have been independently associated with structural remodeling and with inflammation. We hypothesized that sustained inflammatory signaling by tumor necrosis factor (TNF) would lead to alterations both in underlying atrial myocardial structure and in atrial electrical conduction. We performed ECG recording, intracardiac electrophysiology studies, epicardial mapping, and connexin immunohistochemical analyses on transgenic mice with targeted overexpression of TNF in the cardiac compartment (MHCsTNF) and on wild-type (WT) control mice (age 8-16 wk). Atrial and ventricular conduction abnormalities were always evident on ECG in MHCsTNF mice, including a shortened atrioventricular interval with a wide QRS duration secondary to junctional rhythm. Supraventricular arrhythmias were observed in five of eight MHCsTNF mice, whereas none of the mice demonstrated ventricular arrhythmias. No arrhythmias were observed in WT mice. Left ventricular conduction velocity during apical pacing was similar between the two mouse groups. Connexin40 was significantly downregulated in MHCsTNF mice. In contrast, connexin43 density was not significantly altered in MHCsTNF mice, but rather dispersed away from the intercalated disks. In conclusion, sustained inflammatory signaling contributed to atrial structural remodeling and downregulation of connexin40 that was associated with an increased prevalence of atrial arrhythmias.  相似文献   

6.
BackgroundHeart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.ObjectiveIn this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.MethodsThe electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation.ResultsNo reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.ConclusionStructural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.  相似文献   

7.
Convergent atrial fibrillation ablation involves extensive epicardial as well as endocardial ablation of the left atrium. We examined whether it changes the morphology of the surface P wave. We reviewed electrocardiograms of 29 patients who underwent convergent ablation for atrial fibrillation. In leads V1, II and III, we measured P wave duration, area and amplitude before ablation, and at 1, 3 and 6 months from ablation.After ablation, there were no significant changes in P wave amplitude, area, or duration in leads II and III. There was a significant reduction in the area of the terminal negative deflection of the P wave in V1 from 0.38 mm2 to 0.13 mm2 (p = 0.03). There is also an acute increase in the amplitude and duration of the positive component of the P wave in V1 followed by a reduction in both by 6 months. Before ablation, 62.5% of the patients had biphasic P waves in V1. In 6 months, only 39.2% of them had biphasic P waves.Hybrid ablation causes a reduction of the terminal negative deflection of the P wave in V1 as well as temporal changes in the duration and amplitude of the positive component of the P wave in V1. This likely reflects the reduced electrical contribution of the posterior left atrium after ablation as well as anatomical and autonomic remodeling. Recognition of this altered sinus P wave morphology is useful in the diagnosis of atrial arrhythmias in this patient population.  相似文献   

8.
Rapid atrial pacing causes electrical remodeling that leads to atrial fibrillation (AF). AF can further remodel atrial electrophysiology to maintain AF. Our previous studies showed that there was a marked difference in the duration of AF in dogs that have been atrial paced at 400 beats/min for 6 wk. We hypothesized that this difference is based on the changes in the degree of electrical remodeling caused by rapid atrial pacing versus that by AF. Right atrial cells were isolated from control dogs (Con, N = 28), from dogs with chronic AF (cAF dogs, N = 13, episodes lasting at least 6 days), or from dogs with nonsustained or brief episodes of AF (nAF dogs, N = 10, episodes lasting minutes to hours). Both transient outward (Ito) and sustained outward K+ current (Isus) densities/functions were determined using whole cell voltage-clamp techniques. In nAF cells, Ito density was reduced by 69% at +40 mV: from 7.1 +/- 0.5 pA/pF (Con, n = 59) to 2.2 +/- 0.2 pA/pF (nAF, n = 24) (P < 0.05). The voltage dependence of inactivation of Ito was shifted positively and decay kinetics were changed; however, recovery from inactivation was not altered in nAF cells. In contrast, Ito density in cAF cells was both significantly different from Con cells and larger than that in nAF cells [at +40 mV, 3.5 +/- 0.3 pA/pF (cAF, n = 29), P < 0.05]. In cAF cells, recovery from inactivation and decay of Ito were both slow; yet, voltage dependence inactivation of Ito approached that of Con cells. Furthermore, "recovered" Ito of cAF cells was more sensitive to tetraethylammonium than currents of Con and nAF cells. Isus densities of nAF and cAF cells did not differ. Both nAF and cAF cells have reduced Ito versus Con cells, but Ito remodeling of nAF cells differed from that of cAF cells. Ito in cAF dogs was likely remodeled by AF per se, whereas that in nAF dogs was likely the consequence of the rapid rate in the absence of sustained AF.  相似文献   

9.
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.  相似文献   

10.
The mechanism of atrial flutter and fibrillation induced by rapid pacing in 22 dogs with 3-day-old sterile pericarditis was investigated by computerized epicardial mapping of atrial activation before and after administration of agents known to modify atrial electrophysiologic properties: procainamide, isoproterenol, and electrical stimulation of the vagosympathetic trunks. Before the administration of any of these agents, a total of 30 episodes of sustained atrial flutter (greater than 1 min duration, monomorphic; regular cycle length, 127 +/- 12 ms, mean +/- SD) was induced in 15 out of 22 dogs and 9 episodes of unstable atrial flutter (duration, less than 1 min; cycle length, 129 +/- 34 ms; monomorphic, alternating with fibrillation) were induced in the remaining 7 preparations. In the latter, administration of procainamide transformed unstable atrial flutter and atrial fibrillation to sustained atrial flutter (cycle length, 142 +/- 33 ms; n = 9 episodes). During control atrial flutter, atrial maps displayed circus movement of excitation in the right atrial free wall with faster conduction parallel to the orientation of intra-atrial myocardial bundles. Vagal stimulation changed atrial flutter to atrial fibrillation in 32 of 73 trials; this was associated with acceleration of conduction in the lower right atrium, leading to fragmentation of the major wave front. Isoproterenol produced a 6-25% increase of the atrial rate in 6 out of 14 trials of atrial flutter and induced atrial fibrillation in 4. After procainamide, the reentrant pathway was lengthened and conduction was slowed further in the right atrium. Maps obtained during unstable atrial flutter showed incomplete circuits involving the right atrium. Following procainamide infusion, the area of functional dissociation or block was enlarged and a stable circus movement pattern, which was similar to the pattern seen in control atrial flutter, was established in the right atrium. We conclude that (1) the transitions among atrial fibrillation, atrial flutter, and sinus rhythm occur between different functional states of the same circus movement substratum primarily located in the lower right atrial free wall, and (2) the anisotropic conduction properties of the right atrium may contribute to these reentrant arrhythmias and may be potentiated by acute pericarditis.  相似文献   

11.
Several animal models of atrial fibrillation (AF) have been developed that demonstrate either atrial structural remodeling or atrial electrical remodeling, but the characteristics and spatiotemporal organization of the AF between the models have not been compared. Thirty-nine dogs were divided into five groups: rapid atrial pacing (RAP), chronic mitral regurgitation (MR), congestive heart failure (CHF), methylcholine (Meth), and control. Right and left atria (RA and LA, respectively) were simultaneously mapped during episodes of AF in each animal using high-density (240 electrodes) epicardial arrays. Multiple 30-s AF epochs were recorded in each dog. Fast Fourier transform was calculated every 1 s over a sliding 2-s window, and dominant frequency (DF) was determined. Stable, discrete, high-frequency areas were seen in none of the RAP or control dogs, four of nine MR dogs, four of six CHF dogs, and seven of nine Meth dogs in either the RA or LA or both. Average DFs in the Meth model were significantly greater than in all other models in both LA and RA except LA DFs in the RAP model. The RAP model was the only one with a consistent LA-to-RA DF gradient (9.5 +/- 0.2 vs. 8.3 +/- 0.3 Hz, P < 0.00005). The Meth model had a higher spatial and temporal variance of DFs and lower measured organization levels compared with the other AF models, and it was the only model to show a linear relationship between the highest DF and dispersion (R(2) = 0.86). These data indicate that structural remodeling of atria (models known to have predominantly altered conduction) leads to an AF characterized by a stable high-frequency area, whereas electrical remodeling of atria (models known to have predominantly shortened refractoriness without significant conduction abnormalities) leads to an AF characterized by multiple high-frequency areas and multiple wavelets.  相似文献   

12.
Excessive alcohol consumption has long been identified as a risk factor for adverse atrial remodeling and atrial fibrillation (AF). Icariin is a principal active component from traditional Chinese medicine Herba Epimedii and has been demonstrated to exert potential antiarrhythmic effect. The present study was designed to evaluate the effect of icariin against alcohol-induced atrial remodeling and disruption of mitochondrial dynamics and furthermore, to elucidate the underlying mechanisms. Excessive alcohol-treated C57BL/6 J mice were infected with serotype 9 adeno-associated virus (AAV9) carrying mouse SIRT3 gene or negative control virus. Meanwhile, icariin (50 mg/kg/d) was administered to the animals in the presence or absence of AAV9 carrying SIRT3 shRNA. We noted that 8 weeks of icariin treatment effectively attenuated alcohol consumption-induced atrial structural and electrical remodeling as evidenced by reduced AF inducibility and reversed atrial electrical conduction pattern as well as atrial enlargement. Furthermore, icariin-treated group exhibited significantly enhanced atrial SIRT3-AMPK signaling, decreased atrial mitoSOX fluorescence and mitochondrial fission markers, elevated mitochondrial fusion markers (MFN1, MFN2) as well as NRF-1-Tfam-mediated mitochondrial biogenesis. Importantly, these beneficial effects were mimicked by SIRT3 overexpression while abolished by SIRT3 knockdown. These data revealed that targeting atrial SIRT3-AMPK signaling and preserving mitochondrial dynamics might serve as the novel therapeutic strategy against alcohol-induced AF genesis. Additionally, icariin ameliorated atrial remodeling and mitochondrial dysfunction by activating SIRT3-AMPK signaling, highlighting the use of icariin as a promising antiarrhythmic agent in this circumstance.  相似文献   

13.
It has been suggested that reentrant activity in three-dimensional cardiac muscle may be organized as a scroll wave rotating around a singularity line called the filament. Experimental studies indicate that filaments are often concealed inside the ventricular wall and consequently, scroll waves do not manifest reentrant activity on the surface. Here we analyse how such concealed scroll waves are affected by a twisted anisotropy resulting from rotation of layers of muscle fibers inside the ventricular wall. We used a computer model of a ventricular slab (15x15x15 mm(3)) with a fiber twist of 120 degrees from endocardium to epicardium. The action potential was simulated using FitzHugh-Nagumo equations. Scroll waves with rectilinear filaments were initiated at various depths of the slab and at different angles with respect to fiber orientation. The analysis shows that independent of initial conditions, after a certain transitional period, the filament aligns with the local fiber orientation. The alignment of the filament is determined by the directional variations in cell coupling due to fiber rotation and by boundary conditions. Our findings provide a mechanistic explanation for the prevalence of intramural reentry over transmural reentry during polymorphic ventricular tachycardia and fibrillation.  相似文献   

14.
The role of atrial dilatation in the domestication of atrial fibrillation   总被引:7,自引:0,他引:7  
Numerous clinical investigations as well as recent experimental studies have demonstrated that atrial fibrillation (AF) is a progressive arrhythmia. With time paroxysmal AF becomes persistent and the success rate of cardioversion of persistent AF declines. Electrical remodeling (shortening of atrial refractoriness) develops within the first days of AF and contributes to the increase in stability of the arrhythmia. However, ‘domestication of AF’ must also depend on other mechanisms since the persistence of AF continues to increase after electrical remodeling has been completed. During the first days of AF in the goat, electrical and contractile remodeling (loss of atrial contractility) followed exactly the same time course suggesting that they are due to the same underlying mechanism. Contractile remodeling not only enhances the risk of atrial thrombus formation, it also enhances atrial dilatation by increasing the compliance of the fibrillating atrium. In goats with chronic AV-block atrial dilatation increased the duration of artificially induced AF-episodes but did not change atrial refractoriness or the AF cycle length. When AF was maintained a couple of days in these animals, a shortening of the atrial refractory period did occur. However, the AF cycle length did not decrease. Long lasting episodes of AF with a long AF cycle length and a wide excitable gap suggest that in this model AF is mainly promoted by conduction disturbances. Chronic atrial stretch induces activation of numerous signaling pathways leading to cellular hypertrophy, fibroblast proliferation and tissue fibrosis. The resulting electroanatomical substrate in dilated atria is characterized by increased non-uniform anisotropy and macroscopic slowing of conduction, promoting reentrant circuits in the atria. Prevention of electroanatomical remodeling by blockade of pathways activated by chronic atrial stretch therefore provides a promising strategy for future treatment of AF.  相似文献   

15.
The progressive nature of atrial fibrillation (AF) has been demonstrated in numerous experimental as well as clinical investigations. Electrical remodeling (shortening of atrial refractoriness) develops within the first days of AF and contributes to the increase in stability of the arrhythmia. However, "domestication of AF" must also depend on other mechanisms since the stability of AF continues to increase after electrical remodeling has been completed. Chronic atrial stretch induces activation of numerous signaling pathways leading to cellular hypertrophy, fibroblast proliferation and tissue fibrosis. The resulting electro-anatomical substrate is characterized by increased non-uniform anisotropy and local conduction heterogeneities facilitating reentry in the dilated atria. Atrial fibrosis may lead to disruption of the electrical side-to-side junctions between muscle bundles. This can result in electrical dissociation between neighboring muscle bundles, i.e. they become activated out-of-phase. Recent mapping studies in goats with persistent AF showed that electrical dissociation can not only occur between neighboring muscle bundles but also in the third dimension, i.e. between the epicardial layer and the endocardial bundle network. Such endo-epicardial dissociation will significantly increase the number of wavefronts which can simultaneously be present in the atrial wall. This article reviews data suggesting a role of endo-epicardial dissociation in dilated and fibrillating atria, for the self-perpetuating nature of AF as well as its possible implications for therapeutic interventions.  相似文献   

16.
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ∼44%), whereas the Ba2+-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (−53 ± 2 mV vs. −42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K+-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics.  相似文献   

17.
Regional hyperkalemia during acute myocardial ischemia is a major factor promoting electrophysiological abnormalities leading to ventricular fibrillation (VF). However, steep action potential duration restitution, recently proposed to be a major determinant of VF, is typically decreased rather than increased by hyperkalemia and acute ischemia. To investigate this apparent contradiction, we simulated the effects of regional hyperkalemia and other ischemic components (anoxia and acidosis) on the stability of spiral wave reentry in simulated two-dimensional cardiac tissue by use of the Luo-Rudy ventricular action potential model. We found that the hyperkalemic "ischemic" area promotes wavebreak in the surrounding normal tissue by accelerating the rate of spiral wave reentry, even after the depolarized ischemic area itself has become unexcitable. Furthermore, wavebreak and fibrillation can be prevented if the dynamical instability of the normal tissue is reduced significantly by targeting electrical restitution properties, suggesting a novel therapeutic approach.  相似文献   

18.
Both autonomic nerve activity and electrical remodeling are important in atrial arrhythmogenesis. Therefore, dogs with sympathetic hyperinnervation, myocardial infarction (MI), and complete atrioventricular block (CAVB) may have a high incidence of atrial arrhythmias. We studied eight dogs (experimental group) with MI, CAVB, and sympathetic hyperinnervation induced either by nerve growth factor infusion (n = 4 dogs) or subthreshold electrical stimulation (n = 4 dogs) of the left stellate ganglion. Cardiac rhythm was continuously monitored by a Data Sciences International transmitter for 48 (SD 27) days. Three normal control dogs were also monitored. Six additional normal dogs were used for histology control. Paroxysmal atrial fibrillation (PAF) and paroxysmal atrial tachycardia (PAT) were documented in all dogs in the experimental group, with an average of 3.8 (SD 3) episodes/day, including 1.3 (SD 1.6) episodes of PAF and 2.5 (SD 2.2) episodes of PAT. The duration averaged 298 (SD 745) s (range, 7-4,000 s). There was a circadian pattern of arrhythmia onset (P < 0.01). Of 576 episodes of PAF and PAT, 236 (41%) episodes occurred during either sustained or nonsustained ventricular tachycardia (VT). Among these 236 episodes, 53% started before VT, whereas 47% started after the onset of VT. Normal dogs did not have either PAF or PAT. The hearts from the experimental group had a higher density of nerve structures immunopositive (P < 0.01) for three different nerve specific markers in both right and left atria than those of the control dogs. We conclude that the induction of nerve sprouting and sympathetic hyperinnervation in dogs with CAVB and MI creates a high yield model of PAF and PAT.  相似文献   

19.
20.
The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different atrial arrhythmic propagation patterns and the electrograms observed at more than 43000 points on the atrial surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号