首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate-dependent repolarization (RDR) of action potential (AP) in cardiomyocyte plays a critical role in the genesis of arrhythmias and RDR in atrium has been linked with atrial fibrillation. However, detailed studies focusing on the role of RDR in rabbit atrium are scant. In this study, atrial cells were isolated from rabbit heart and rate-dependent property was explored in single atrial cell to elucidate the underlying mechanism. Our results indicated that rate-dependent prolongation was evident at the action potential duration at 20% (APD20) and 50% (APD50) repolarization but not at 90% repolarization (APD90) under control condition. Using transient outward potassium current (Ito) inhibitor 4-Aminopyridine (4-AP, 2 mM) effectively eliminated the changes in APD20 and APD50, and unmasked the rate-dependent reduction of APD90 which could be diminished by further adding L-type calcium current (ICaL) inhibitor nifedipine (30 μM). However, using the selective late sodium current (INaL) inhibitor GS-458967 (GS967, 1 μM) caused minimal effect on APD90 of atrial cells both in the absence and presence of 4-AP. In consistence with results from APs, Ito and ICaL displayed significant rate-dependent reduction because of their slow reactivation kinetics. In addition, the magnitude of INaL in rabbit atrium was so small that its rate-dependent changes were negligible. In conclusion, our study demonstrated that Ito and ICaL mediate RDR of AP in rabbit atrium, while minimal effect of INaL was seen.  相似文献   

2.
Experimental evidence suggests that regional differences in action potential (AP) morphology can provide a substrate for initiation and maintenance of reentrant arrhythmias in the right atrium (RA), but the relationships between the complex electrophysiological and anatomical organization of the RA and the genesis of reentry are unclear. In this study, a biophysically detailed three-dimensional computer model of the right atrial tissue was constructed to study the role of tissue heterogeneity and anisotropy in arrhythmogenesis. The model of Lindblad et al. for a rabbit atrial cell was modified to incorporate experimental data on regional differences in several ionic currents (primarily, INa, ICaL, IK1, Ito, and Isus) between the crista terminalis and pectinate muscle cells. The modified model was validated by its ability to reproduce the AP properties measured experimentally. The anatomical model of the rabbit RA (including tissue geometry and fiber orientation) was based on a recent histological reconstruction. Simulations with the resultant electrophysiologically and anatomically detailed three-dimensional model show that complex organization of the RA tissue causes breakdown of regular AP conduction patterns at high pacing rates (>11.75 Hz): as the AP in the crista terminalis cells is longer, and electrotonic coupling transverse to fibers of the crista terminalis is weak, high-frequency pacing at the border between the crista terminalis and pectinate muscles results in a unidirectional conduction block toward the crista terminalis and generation of reentry. Contributions of the tissue heterogeneity and anisotropy to reentry initiation mechanisms are quantified by measuring action potential duration (APD) gradients at the border between the crista terminalis and pectinate muscles: the APD gradients are high in areas where both heterogeneity and anisotropy are high, such that intrinsic APD differences are not diminished by electrotonic interactions. Thus, our detailed computer model reconstructs complex electrical activity in the RA, and provides new insights into the mechanisms of transition from focal atrial tachycardia into reentry.  相似文献   

3.
Adult women have longer QT intervals compared with men of a similar age, indicating differences in the speed of repolarisation of the ventricles. We investigate the influences of gender on ventricular electrophysiology and intracellular Ca2+ regulation of the guinea pig heart. Comparing sexually mature animals, females exhibited a significantly longer APD. Peak L-type Ca2+ current (ICaL) was larger in females and when this current was inhibited with nifedipine the gender differences in APD were removed. APD differences also disappeared when the SR was depleted of Ca2+. Inactivation of ICaL during a clamp step is faster in females but slower during an action potential and SR Ca2+ content is larger. We suggest that gender differences in APD result from variation in the kinetics of ICaL stemming from alterations to Ca2+ release.  相似文献   

4.
The proarrhythmic effects of new drugs have been assessed by measuring rapidly activating delayed-rectifier K+ current (IKr) antagonist potency. However, recent data suggest that even drugs thought to be highly specific IKr blockers can be arrhythmogenic via a separate, time-dependent pathway such as late Na+ current augmentation. Here, we report a mechanism for a quinolone antibiotic, sparfloxacin-induced action potential duration (APD) prolongation that involves increase in late L-type Ca2+ current (ICaL) caused by a decrease in Ca2+-dependent inactivation (CDI). Acute exposure to sparfloxacin, an IKr blocker with prolongation of QT interval and torsades de pointes (TdP) produced a significant APD prolongation in rat ventricular myocytes, which lack IKr due to E4031 pretreatment. Sparfloxacin reduced peak ICaL but increased late ICaL by slowing its inactivation. In contrast, ketoconazole, an IKr blocker without prolongation of QT interval and TdP produced reduction of both peak and late ICaL, suggesting the role of increased late ICaL in arrhythmogenic effect. Further analysis showed that sparfloxacin reduced CDI. Consistently, replacement of extracellular Ca2+ with Ba2+ abolished the sparfloxacin effects on ICaL. In addition, sparfloxacin modulated ICaL in a use-dependent manner. Cardiomyocytes from adult mouse, which is lack of native IKr, demonstrated similar increase in late ICaL and afterdepolarizations. The present findings show that sparfloxacin can prolong APD by augmenting late ICaL. Thus, drugs that cause delayed ICaL inactivation and IKr blockage may have more adverse effects than those that selectively block IKr. This mechanism may explain the reason for discrepancies between clinically reported proarrhythmic effects and IKr antagonist potencies.  相似文献   

5.
Cell coupling is considered to be important for cardiac action potential propagation and arrhythmogenesis. We carried out computer simulations to investigate the effects of stimulation strength and cell-to-cell coupling on action potential duration (APD) restitution, APD alternans, and stability of reentry in models of isolated cell, one-dimensional cable, and two-dimensional tissue. Phase I formulation of the Luo and Rudy action potential model was used. We found that stronger stimulation resulted in a shallower APD restitution curve and onset of APD alternans at a faster pacing rate. Reducing diffusive coupling between cells prolonged APD. Weaker diffusive currents along the direction of propagation steepened APD restitution and caused APD alternans to occur at a slower pacing rate in tissue. Diffusive current due to curvature changed APD but had little effect on APD restitution slope and onset of instability. Heterogeneous cell coupling caused APD inhomogeneities in space. Reduction in coupling strength either uniformly or randomly had little effect on the rotation period and stability of a reentry, but random cell decoupling slowed the rotation period and, thus, stabilized the reentry, preventing it from breaking up into multiple waves. Therefore, in addition to its effects on action potential conduction velocity, diffusive cell coupling also affects APD in a rate-dependent manner, causes electrophysiological heterogeneities, and thus modulates the dynamics of cardiac excitation. These effects are brought about by the modulation of ionic current activation and inactivation.  相似文献   

6.
Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca2+ and Na+ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the [Mahajan et?al., 2008a] and [Mahajan et?al., 2008b] AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K+ current (IK1) whereas APD rate adaptation as well as [Na+]i rate dependence is influenced by the Na+/K+ pump current (INaK). In addition, steady-state [Ca2+]i levels, APD restitution properties and [Ca2+]i rate dependence are strongly dependent on INaK, the L-Type Ca2+ current (ICaL) and the Na+/Ca2+ exchanger current (INaCa), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular electrophysiology and validation of cardiac AP models.  相似文献   

7.
The macrolide antibiotic azithromycin (AZM) is widely used for respiratory infections and has been suggested to be a possible treatment for the Coronavirus Disease of 2019 (COVID-19). However, AZM-associated QT interval prolongation and arrhythmias have been reported. Integrated mechanistic information on AZM actions on human ventricular excitation and conduction is lacking. Therefore, this study was undertaken to investigate the actions of AZM on ventricular cell and tissue electrical activity. The O'Hara- Virag-Varro-Rudy dynamic (ORd) model of human ventricular cells was modified to incorporate experimental data on the concentration-dependent actions of AZM on multiple ion channels, including INa, ICaL, IKr, IKs, IK1 and INaL in both acute and chronic exposure conditions. In the single cell model, AZM prolonged the action potential duration (APD) in a concentration-dependent manner, which was predominantly attributable to IKr reduction in the acute condition and potentiated INaL in the chronic condition. High concentrations of AZM also increased action potential (AP) triangulation (determined as an increased difference between APD30 and APD90) which is a marker of arrhythmia risk. In the chronic condition, the potentiated INaL caused a modest intracellular Na + concentration accumulation at fast pacing rates. At the 1D tissue level, the AZM-prolonged APD at the cellular level was reflected by an increased QT interval in the simulated pseudo-ECG, consistent with clinical observations. Additionally, AZM reduced the conduction velocity (CV) of APs in the acute condition due to a reduced INa, and it augmented the transmural APD dispersion of the ventricular tissue, which is also pro-arrhythmic. Such actions were markedly augmented when the effects of chronic exposure of AZM were also considered, or with additional IKr block, as may occur with concurrent use of other medications. This study provides insights into the ionic mechanisms by which high concentrations of AZM may modulate ventricular electrophysiology and susceptibility to arrhythmia.  相似文献   

8.
Our mathematical model of the rat ventricular myocyte (Pandit et al., 2001) was utilized to explore the ionic mechanism(s) that underlie the altered electrophysiological characteristics associated with the short-term model of streptozotocin-induced, type-I diabetes. The simulations show that the observed reductions in the Ca2+-independent transient outward K+ current (It) and the steady-state outward K+ current (Iss), along with slowed inactivation of the L-type Ca2+ current (ICaL), can result in the prolongation of the action potential duration, a well-known experimental finding. In addition, the model demonstrates that the slowed reactivation kinetics of It in diabetic myocytes can account for the more pronounced rate-dependent action potential duration prolongation in diabetes, and that a decrease in the electrogenic Na+-K+ pump current (INaK) results in a small depolarization in the resting membrane potential (Vrest). This depolarization reduces the availability of the Na+ channels (INa), thereby resulting in a slower upstroke (dV/dtmax) of the diabetic action potential. Additional simulations suggest that a reduction in the magnitude of ICaL, in combination with impaired sarcoplasmic reticulum uptake can lead to a decreased sarcoplasmic reticulum Ca2+ load. These factors contribute to characteristic abnormal [Ca2+]i homeostasis (reduced peak systolic value and rate of decay) in myocytes from diabetic animals. In combination, these simulation results provide novel information and integrative insights concerning plausible ionic mechanisms for the observed changes in cardiac repolarization and excitation-contraction coupling in rat ventricular myocytes in the setting of streptozotocin-induced, type-I diabetes.  相似文献   

9.
Dispersion of action potential repolarization is known to be an important arrhythmogenic factor in cardiopathies such as Brugada syndrome. In this work, we analyze the effect of a variation in sodium current (INa) inactivation and a heterogeneous rise of transient outward current (Ito) in the probability of reentry in epicardial tissue. We use the Luo-Rudy model of epicardial ventricular action potential to study wave propagation in a one-dimensional fiber. Spatial dispersion in repolarization is introduced by splitting the fiber into zones with different strength of Ito. We then analyze the pro-arrhythmic effect of a variation in the relaxation time and steady-state of the sodium channel fast inactivating gate h. We quantify the probability of reentry measuring the percentage of reexcitations that occurs in 200 beats. We find that, for high stimulation rates, this percentage is negligible, but increases notably for pacing periods above 700 ms. Surprisingly, with decreasing INa inactivation time, the percentage of reexcitations does not grow monotonically, but presents vulnerable windows, separated by values of the INa inactivation speed-up where reexcitation does not occur. By increasing the strength of L-type calcium current ICaL above a certain threshold, reexcitation disappears. Finally, we show the formation of reentry in stimulated two-dimensional epicardial tissue with modified INa kinetics and Ito heterogeneity. Thus, we confirm that while Ito dispersion is necessary for phase-2 reentry, altered sodium inactivation kinetics influences the probability of reexcitation in a highly nonlinear fashion.  相似文献   

10.

Aim

Hydrogen sulfide (H2S) is a promising cardioprotective agent and a potential modulator of cardiac ion currents. Yet its cardiac effects on humans are poorly understood due to lack of functional cardiomyocytes. This study investigates electrophysiological responses of human pluripotent stem cells (hPSCs) derived cardiomyocytes towards H2S.

Methods and Results

Cardiomyocytes of ventricular, atrial and nodal subtypes differentiated from H9 embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were electrophysiologically characterized. The effect of NaHS, a donor of H2S, on action potential (AP), outward rectifier potassium currents (I Ks and I Kr), L-type Ca2+ currents (I CaL) and hyperpolarization-activated inward current (I f) were determined by patch-clamp electrophysiology and confocal calcium imaging. In a concentration-dependent manner, NaHS (100 to 300 µM) consistently altered the action potential properties including prolonging action potential duration (APD) and slowing down contracting rates of ventricular-and atrial-like cardiomyocytes derived from both hESCs and hiPSCs. Moreover, inhibitions of slow and rapid I K (I Ks and I Kr), I CaL and I f were found in NaHS treated cardiomyocytes and it could collectively contribute to the remodeling of AP properties.

Conclusions

This is the first demonstration of effects of H2S on cardiac electrophysiology of human ventricular-like, atrial-like and nodal-like cardiomyocytes. It reaffirmed the inhibitory effect of H2S on I CaL and revealed additional novel inhibitory effects on I f, I Ks and I Kr currents in human cardiomyocytes.  相似文献   

11.
Atrial fibrillation (AF) is the most common cardiac arrhythmia, but our knowledge of the arrhythmogenic substrate is incomplete. Alternans, the beat-to-beat alternation in the shape of cardiac electrical signals, typically occurs at fast heart rates and leads to arrhythmia. However, atrial alternans have been observed at slower pacing rates in AF patients than in controls, suggesting that increased vulnerability to arrhythmia in AF patients may be due to the proarrythmic influence of alternans at these slower rates. As such, alternans may present a useful therapeutic target for the treatment and prevention of AF, but the mechanism underlying alternans occurrence in AF patients at heart rates near rest is unknown. The goal of this study was to determine how cellular changes that occur in human AF affect the appearance of alternans at heart rates near rest. To achieve this, we developed a computational model of human atrial tissue incorporating electrophysiological remodeling associated with chronic AF (cAF) and performed parameter sensitivity analysis of ionic model parameters to determine which cellular changes led to alternans. Of the 20 parameters tested, only decreasing the ryanodine receptor (RyR) inactivation rate constant (kiCa) produced action potential duration (APD) alternans seen clinically at slower pacing rates. Using single-cell clamps of voltage, fluxes, and state variables, we determined that alternans onset was Ca2+-driven rather than voltage-driven and occurred as a result of decreased RyR inactivation which led to increased steepness of the sarcoplasmic reticulum (SR) Ca2+ release slope. Iterated map analysis revealed that because SR Ca2+ uptake efficiency was much higher in control atrial cells than in cAF cells, drastic reductions in kiCa were required to produce alternans at comparable pacing rates in control atrial cells. These findings suggest that RyR kinetics may play a critical role in altered Ca2+ homeostasis which drives proarrhythmic APD alternans in patients with AF.  相似文献   

12.
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ∼44%), whereas the Ba2+-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (−53 ± 2 mV vs. −42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K+-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics.  相似文献   

13.
Beat-to-beat variability of repolarization duration (BVR) is an intrinsic characteristic of cardiac function and a better marker of proarrhythmia than repolarization prolongation alone. The ionic mechanisms underlying baseline BVR in physiological conditions, its rate dependence, and the factors contributing to increased BVR in pathologies remain incompletely understood. Here, we employed computer modeling to provide novel insights into the subcellular mechanisms of BVR under physiological conditions and during simulated drug-induced repolarization prolongation, mimicking long-QT syndromes type 1, 2, and 3. We developed stochastic implementations of 13 major ionic currents and fluxes in a model of canine ventricular-myocyte electrophysiology. Combined stochastic gating of these components resulted in short- and long-term variability, consistent with experimental data from isolated canine ventricular myocytes. The model indicated that the magnitude of stochastic fluctuations is rate dependent due to the rate dependence of action-potential (AP) duration (APD). This process (the “active” component) and the intrinsic nonlinear relationship between membrane current and APD (“intrinsic component”) contribute to the rate dependence of BVR. We identified a major role in physiological BVR for stochastic gating of the persistent Na+ current (INa) and rapidly activating delayed-rectifier K+ current (IKr). Inhibition of IKr or augmentation of INa significantly increased BVR, whereas subsequent β-adrenergic receptor stimulation reduced it, similar to experimental findings in isolated myocytes. In contrast, β-adrenergic stimulation increased BVR in simulated long-QT syndrome type 1. In addition to stochastic channel gating, AP morphology, APD, and beat-to-beat variations in Ca2+ were found to modulate single-cell BVR. Cell-to-cell coupling decreased BVR and this was more pronounced when a model cell with increased BVR was coupled to a model cell with normal BVR. In conclusion, our results provide new insights into the ionic mechanisms underlying BVR and suggest that BVR reflects multiple potentially proarrhythmic parameters, including increased ion-channel stochasticity, prolonged APD, and abnormal Ca2+ handling.  相似文献   

14.

Background

Cardiomyocytes derived from murine embryonic stem (ES) cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP) in regulation of membrane potentials and Ca2+ currents has not been investigated in developmental cardiomyocytes.

Methodology/Principal Findings

We investigated the role of ANP in regulating L-type Ca2+ channel current (ICaL) in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs) in early developmental stage (EDS) cardiomyocytes, embryonic bodies (EB) as well as whole embryo hearts. ANP exerted an inhibitory effect on basal ICaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS) cells. However, after stimulation of ICaL by isoproterenol (ISO) in LDS cells, ANP inhibited the response in about 70% cells. The depression of ICaL induced by ANP was not affected by either Nω, Nitro-L-Arginine methyl ester (L-NAME), a nitric oxide synthetase (NOS) inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG) selective inhibitor, in either EDS and LDS cells; whereas depression of ICaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl) adenine (EHNA), a selective inhibitor of type 2 phosphodiesterase(PDE2) in most cells tested.

Conclusion/Significances

Taken together, these results indicate that ANP induced depression of action potentials and ICaL is due to activation of particulate guanylyl cyclase (GC), cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3′, 5′–cyclic monophophate (cAMP)–cAMP-dependent protein kinase (PKA) in early cardiomyogenesis.  相似文献   

15.
Inflammation is now widely recognized as a key component of heart disease. Patients suffering from arrhythmias and heart failure have increased levels of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β). Evidence suggests that these cytokines are important mediators of cardiac remodeling; however, their effects on ion channels and arrhythmogenesis remain incompletely understood. The L-type Ca2+ current (ICaL) is a major determinant of the plateau phase of cardiac action potential and has a critical excitation-contraction coupling role. Thus, altering its properties could have detrimental effects on cardiac electrical and contractile functions. Accordingly, the objective of this study was to elucidate the effect of TNFα and IL-1β on ICaL, while exploring the underlying regulatory mechanisms. Neonatal mouse ventricular myocytes were treated with a pathophysiological concentration (30 pg/ml) of TNFα and IL-1β for 24 h. Voltage-clamp recordings showed that TNFα had no effect on ICaL, whereas IL-1β decreased the current density by 36%. Although both IL-1β- and TNFα-treated myocytes showed significant increase in reactive oxidative species (ROS), Western blot experiments revealed that only IL-1β increased PKCϵ membrane translocation. The antioxidant N-acetyl-l-cysteine normalized ROS levels and restored ICaL density. Furthermore, the PKCϵ translocation inhibitor ϵ-V1-2 blocked the effect of IL-1β on ICaL. The reduction of ICaL by IL-1β was also seen in cultured adult ventricular myocytes. Overall, chronic IL-1β treatment decreased ICaL density in cardiomyocytes. These effects implicated ROS signaling and PKCϵ activation. These findings could contribute to explain the role of IL-1β in the development of arrhythmia and heart failure.  相似文献   

16.
Beat-to-beat variability in repolarization (BVR) has been proposed as an arrhythmic risk marker for disease and pharmacological action. The mechanisms are unclear but BVR is thought to be a cell level manifestation of ion channel stochasticity, modulated by cell-to-cell differences in ionic conductances. In this study, we describe the construction of an experimentally-calibrated set of stochastic cardiac cell models that captures both BVR and cell-to-cell differences in BVR displayed in isolated canine action potential measurements using pharmacological agents. Simulated and experimental ranges of BVR are compared in control and under pharmacological inhibition, and the key ionic currents determining BVR under physiological and pharmacological conditions are identified. Results show that the 4-aminopyridine-sensitive transient outward potassium current, Ito1, is a fundamental driver of BVR in control and upon complete inhibition of the slow delayed rectifier potassium current, IKs. In contrast, IKs and the L-type calcium current, ICaL, become the major contributors to BVR upon inhibition of the fast delayed rectifier potassium current, IKr. This highlights both IKs and Ito1 as key contributors to repolarization reserve. Partial correlation analysis identifies the distribution of Ito1 channel numbers as an important independent determinant of the magnitude of BVR and drug-induced change in BVR in control and under pharmacological inhibition of ionic currents. Distributions in the number of IKs and ICaL channels only become independent determinants of the magnitude of BVR upon complete inhibition of IKr. These findings provide quantitative insights into the ionic causes of BVR as a marker for repolarization reserve, both under control condition and pharmacological inhibition.  相似文献   

17.

Aims

Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR) and chronic atrial fibrillation (cAF) patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP) recorded in 363 patients both under SR and cAF conditions.

Methods and Results

Human AP recordings in atrial trabeculae (n = 469) from SR and cAF patients were used to calibrate populations of computational SR and cAF atrial AP models. Three populations of over 2000 sampled models were generated, based on three different human atrial AP models. Experimental calibration selected populations of AP models yielding AP with morphology and duration in range with experimental recordings. Populations using the three original models can mimic variability in experimental AP in both SR and cAF, with median conductance values in SR for most ionic currents deviating less than 30% from their original peak values. All cAF populations show similar variations in GK1, GKur and Gto, consistent with AF-related remodeling as reported in experiments. In all SR and cAF model populations, inter-subject variability in IK1 and INaK underlies variability in APD90, variability in IKur, ICaL and INaK modulates variability in APD50 and combined variability in Ito and IKur determines variability in APD20. The large variability in human atrial AP triangulation is mostly determined by IK1 and either INaK or INaCa depending on the model.

Conclusion

Experimentally-calibrated human atrial AP models populations mimic AP variability in SR and cAF patient recordings, and identify potential ionic determinants of inter-subject variability in human atrial AP duration and morphology in SR versus cAF.  相似文献   

18.
Sarcolemmal Na+–Ca2+ exchange plays a central role in ion transport of the myocardium and the current carried with it contributes to the late phase of the action potential (AP) besides the contribution of outward K+-currents. In this study, the mathematical model for AP of the diabetic rat ventricular myocytes [34] was modified and used for the diabetic rat papillary muscle. We used our experimentally measured values of two K+-currents; transient outward current, Ito and steady-state outward current, Iss, as well as L-type Ca2+-current, ICaL, then compared with the simulated values. We have demonstrated that the prolongation in the AP of the papillary muscle of the diabetic rats are not due to the alteration of ICaL but mainly due to the inhibition of the K+-currents and also the Na+–Ca2+ exchanger current, INa–Ca. In combination with our experimental data on sodium-selenite-treated diabetic rats, our simulation results provide new information concerning plausible ionic mechanisms, and second a possible positive effect of selenium treatment on the altered INa–Ca for the observed changes in the AP duration of streptozotocin-induced diabetic rat heart. (Mol Cell Biochem 269: 121–129, 2005)  相似文献   

19.
Short-term cardiac memory refers to the effects of pacing history on action potential duration (APD). Although the ionic mechanisms for short-term memory occurring over many heartbeats (also called APD accommodation) are poorly understood, they may have important effects on reentry and fibrillation. To explore this issue, we incorporated a generic memory current into the Phase I Luo and Rudy action potential model, which lacks short-term memory. The properties of this current were matched to simulate quantitatively human ventricular monophasic action potential accommodation. We show that, theoretically, short-term memory can resolve the paradox of how mother rotor fibrillation is initiated in heterogeneous tissue by physiological pacing. In simulated heterogeneous two-dimensional tissue and three-dimensional ventricles containing an inward rectifier K(+) current gradient, short-term memory could spontaneously convert multiple wavelet fibrillation to mother rotor fibrillation or to a mixture of both fibrillation types. This was due to progressive acceleration and stabilization of rotors as accumulation of memory shortened APD and flattened APD restitution slope nonuniformly throughout the tissue.  相似文献   

20.
Enhanced temporal and spatial variability in cardiac repolarization has been related to increased arrhythmic risk both clinically and experimentally. Causes and modulators of variability in repolarization and their implications in arrhythmogenesis are however not well understood. At the ionic level, the slow component of the delayed rectifier potassium current (IKs) is an important determinant of ventricular repolarization. In this study, a combination of experimental and computational multiscale studies is used to investigate the role of intrinsic and extrinsic noise in IKs in modulating temporal and spatial variability in ventricular repolarization in human and guinea pig. Results show that under physiological conditions: i), stochastic fluctuations in IKs gating properties (i.e., intrinsic noise) cause significant beat-to-beat variability in action potential duration (APD) in isolated cells, whereas cell-to-cell differences in channel numbers (i.e., extrinsic noise) also contribute to cell-to-cell APD differences; ii), in tissue, electrotonic interactions mask the effect of IKs noise, resulting in a significant decrease in APD temporal and spatial variability compared to isolated cells. Pathological conditions resulting in gap junctional uncoupling or a decrease in repolarization reserve uncover the manifestation of IKs noise at cellular and tissue level, resulting in enhanced ventricular variability and abnormalities in repolarization such as afterdepolarizations and alternans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号