首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ubiquitin and ubiquitin-like proteins are known to be covalently conjugated to a variety of cellular substrates via a three-step enzymatic pathway. These modifications lead to the degradation of substrates or change its functional status. The ubiquitin-activating enzyme (E1) plays a key role in the first step of ubiquitination pathway to activate ubiquitin or ubiquitin-like proteins. Ubiquitin-activating enzyme E1-domain containing 1 (UBE1DC1) had been proved to activate an ubiquitin-like protein, ubiquitin-fold modifier 1 (Ufm1), by forming a high-energy thioester bond. In this report, UBE1DC1 is proved to activate another ubiquitin-like protein, SUMO2, besides Ufm1, both in vitro and in vivo by immunological analysis. It indicated that UBE1DC1 could activate two different ubiquitin-like proteins, SUMO2 and Ufm1, which have no significant similarity with each other. Subcellular localization in AD293 cells revealed that UBE1DC1 was especially distributed in the cytoplasm; whereas UBE1DC1 was mainly distributed in the nucleus when was cotransfected with SUMO2. It presumed that UBE1DC1 greatly activated SUMO2 in the nucleus or transferred activated-SUMO2 to nucleus after it conjugated SUMO2 in the cytoplasm.  相似文献   

2.
大鼠睾丸特异表达基因Ube1的分离鉴定及生物学特征   总被引:2,自引:0,他引:2  
Du Y  Liu ML  Jia MC 《生理学报》2008,60(3):382-390
本研究采用抑制性消减杂交(suppression subtracfive hybridization, SSH)和cDNA快速扩增(rapid amplification of cDNA ends, RACE)技术从大鼠A型精原细胞和粗线期精母细胞中成功克隆出大鼠泛素激活酶(ubiquitin-activating enzyme)基因Ube1 (GenBank登录号EF690356).该基因序列全长3433 bp,其中开放阅读框有3171 bp,编码一个含1057个氨基酸的蛋白质.Blast比对显示,Ube1与小鼠泛素激活酶基因Ubely1的同源性为93%,与人泛素激活酶基因UBE1的同源性为82%.Ube1基因编码的蛋白质含泛素激活酶信号位点和泛素激活酶活化位点,这些位点也存在于人类和小鼠的泛素激活酶1中.RT-PCR分析显示,Ube1在睾丸中大量表达,而在心、肝、脾、肺、肾、肌肉、脑、卵巢中没有表达.荧光定量PCR分析不同生精细胞中Ube1的表达,显示Ube1在A型精原细胞中大量表达,在粗线期精母细胞、圆形精子细胞和支持细胞中微弱表达.以上结果提示,Ube1是大鼠睾丸特异表达基因,可能通过参与泛素/蛋白酶体途径来影响精子发生.  相似文献   

3.
UBE1 plays an important role in the first step of ubiquitin–proteasome pathway to activate ubiquitin. Both the structure and biochemical property research of human UBE1 protein, and the activity analysis of those enzymes which are related with ubiquitination pathway, are based on high purity of UBE1 protein. To obtain human UBE1 protein, the full length of human UBE1 was expressed in E. coli and purified by Ni-NTA superflow sepharose and strep-tactin sepharose which based on UB–UBE1 high-energy thioester bonded intermediate complex. It was demonstrated that purified UBE1 could activate and conjugate UB to ubiquitin-conjugating enzyme E2s. The purified large amount of UBE1 could be used for in vitro studies of ubiquitin pathway and structural studies.  相似文献   

4.
5.
UBE1L, ubiquitin-activating enzyme E1-like, is the activating enzyme of ISG15ylation (ISG15, interferon stimulated gene 15). Loss of UBE1L and activation of epidermal growth factor receptor (EGFR) signaling are common events in lung carcinogenesis. Curcumin, a well-studied chemopreventive agent, is known to down-regulate EGFR. The present study demonstrated that curcumin decreased EGFR expression in human bronchial epithelial (HBE) Beas-2B cells and lung cancer A549 cells. For the first time, UBE1L was found to be induced by curcumin in HBE cells. Interestingly, overexpression of UBE1L reduced EGFR at posttranslational level in HBE cells. UBE1L triggered EGFR membrane internalization and promoted complex formation between ISG15 and EGFR. Curcumin decreased EGFR downstream signaling pAKT and nuclear factor κB (NF-κB). Overexpression or knockdown of UBE1L also resulted in down-regulation or up-regulation of phosphoinositide 3-kinase/AKT/NF-κB correspondently. In human samples, there was an inverse relationship between UBE1L and EGFR/AKT/NF-κB in non-small cell lung cancer tissues and adjacent tissues. These results uncover a novel chemopreventive mechanism of curcumin in inducing UBE1L and down-regulating EGFR signaling in HBE cells.  相似文献   

6.
The ubiquitin system represents a selective mechanism for intracellular proteolysis in eukaryotic cells that involves the sequential activity of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3). The identification of these proteins and their cellular targets, as well as structural data, are essential to understanding how this system operates in the eukaryotic cell. In the present study, the open reading frame of the human ubiquitin-conjugating enzyme UBE2G2 was isolated from a human brain cDNA panel, cloned into pET28a vector and expressed in Escherichia coli. The His-tagged protein was then purified through nickel-affinity chromatography and subjected to structural and functional studies using circular dichroism (CD) and an in vitro ubiquitin-binding assay, respectively. Our results showed that the production of the HISUBE2G2 protein in bacteria, carried out with 0.1 mM of IPTG at 30 degrees C, was successfully achieved, rendering high concentrations of soluble, pure and stable enzyme after a single purification step. The recombinant protein was able to bind ubiquitin molecules when exposed to a HeLa cell extract during the ubiquitin assay. Moreover, the fact that HISUBE2G2 was expressed in its active form is supported by the typical alpha/beta secondary structure specific to other class I E2 enzymes displayed during the CD assay.  相似文献   

7.
8.
UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme.   总被引:23,自引:2,他引:21       下载免费PDF全文
All known functions of ubiquitin are mediated through its covalent attachment to other proteins. The post-translational formation of ubiquitin--protein conjugates is preceded by an ATP-requiring step in which the carboxyl terminus of ubiquitin is adenylated and subsequently joined, through a thiolester bond, to a cysteine residue in the ubiquitin-activating enzyme, also known as E1. We report the isolation and functional analysis of the gene (UBA1) for the ubiquitin-activating enzyme of the yeast Saccharomyces cerevisiae. UBA1 encodes a 114 kd protein whose amino acid sequence contains motifs characteristic of nucleotide-binding sites. Expression of catalytically active UBA1 protein in E. coli, which lacks the ubiquitin system, confirmed that the yeast UBA1 gene encodes a ubiquitin-activating enzyme. Deletion of the UBA1 gene is lethal, demonstrating that the formation of ubiquitin--protein conjugates is essential for cell viability.  相似文献   

9.
The human gene for ubiquitin-activating enzyme E1 (UBE1) was localized by a direct mapping system that combined fluorescence in situ hybridization with replicated R-bands on prometaphase chromosomes. The fluorescent signals were localized to Xp11.3----p11.23. Simple procedures for the detection of R-bands are also described.  相似文献   

10.
Dou T  Gu S  Liu J  Chen F  Zeng L  Guo L  Xie Y  Mao Y 《Molecular biology reports》2005,32(4):265-271
Ubiquitin and other ubiquitin-like proteins play important roles in post-translational modification. They are phylogenetically well-conserved in eukaryotes. Activated by other proteins, ubiquitin and ubiquitin-like proteins can covalently modify target proteins. The enzymes responsible for the activation of this modification have been known to include UBA1, SAE2, UBA3, SAE1 and ULA1. Here we report a new ubiquitin activating enzyme like cDNA, named ubiquitin activating enzyme E1-domain containing 1 (UBE1DC1), whose cDNA is 2654 base pairs in length and contains an open reading frame encoding 404 amino acids. The UBE1DC1 gene consists of 12 exons and is located at human chromosome 3q22. The result of RT-PCR showed that UBE1DC1 is expressed in most of human tissues. These two authors contributed equally to this paper. The nucleotide sequence reported in this paper has been submitted to GenBank under accession number AY253672.  相似文献   

11.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis anddegradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainlycontrolled by the ubiquitineproteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26Sproteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsiblefor the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such ascancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promotingrole of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimategoal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.  相似文献   

12.
A gene, presumably involved in spermatogenesis, was identified and characterized by using cDNA microarray. Hybridization intensity was 2.13 fold higher in adult testis than that in fetal testis.The full length of this gene was 4288bp and it encoded a 578 amino acid protein. Conserved structure and amino acid sequence analysis revealed that the protein contained 1 Thif-domain, 2 UBACT-domains,and a functional active site cysteine lay upstream of UBACT domain, all of them also existed in ubiquitin-activating enzyme E1 and E1 like proteins. So we named this gene as a novel ubiquitin-activating enzyme E1 like gene (nUBE1L). Expression profile showed that nUBE1L was predominantly expressed in testis.Comparison of the expression of nUBE1L in different developmental stages of testis indicated that it was highly expressed in adult testis. In conclusion, nUBE1L is a novel human E1 like gene highly expressed inadult testis, which plays key role in ubiquitin system, and accordingly influences spermatogenesis and male fertility.  相似文献   

13.
Protein ubiquitination plays an important role in the regulation of almost every aspect of eukaryotic cellular function; therefore, its destabilization is often observed in most human diseases and cancers. Consequently, developing inhibitors of the ubiquitination system for the treatment of cancer has been a recent area of interest. Currently, only a few classes of compounds have been discovered to inhibit the ubiquitin-activating enzyme (E1) and only one class is relatively selective in E1 inhibition in cells. We now report that Largazole and its ester and ketone analogs selectively inhibit ubiquitin conjugation to p27(Kip1) and TRF1 in vitro. The inhibitory activity of these small molecules on ubiquitin conjugation has been traced to their inhibition of the ubiquitin E1 enzyme. To further dissect the mechanism of E1 inhibition, we analyzed the effects of these inhibitors on each of the two steps of E1 activation. We show that Largazole and its derivatives specifically inhibit the adenylation step of the E1 reaction while having no effect on thioester bond formation between ubiquitin and E1. E1 inhibition appears to be specific to human E1 as Largazole ketone fails to inhibit the activation of Uba1p, a homolog of E1 in Schizosaccharomyces pombe. Moreover, Largazole analogs do not significantly inhibit SUMO E1. Thus, Largazole and select analogs are a novel class of ubiquitin E1 inhibitors and valuable tools for studying ubiquitination in vitro. This class of compounds could be further developed and potentially be a useful tool in cells.  相似文献   

14.
15.
16.
We recently identified a differentially expressed gene in implantation stage rabbit endometrium encoding a new member of the ubiquitin-conjugating enzyme family designated UBE2Q2 (also known as UBCi). Its unusually high molecular mass, novel N-terminus extension, and highly selective pattern of mRNA expression suggest a specific function in implantation. This study analyzes its relationship to the E2 ubiquitin-conjugating enzyme superfamily, investigates its enzymatic activity, and examines its localization in implantation site endometrium. Construction of a dendrogram indicated that UBE2Q2 is homologous to the UBC2 family of enzymes, and isoforms are present in a broad range of species. In vitro enzymatic assays of ubiquitin thiolester formation demonstrated that UBE2Q2 is a functional ubiquitin-conjugating enzyme. The Km for transfer of ubiquitin thiolester from E1 to UBE2Q2 is 817 nM compared to 100 nM for other E2 paralogs; this suggests that the unique amino terminal domain of UBE2Q2 confers specific functional differences. Affinity-purified antibodies prepared with purified recombinant UBE2Q2 showed that the protein was undetectable by immunoblot analysis in endometrial lysates from estrous and Day 6(3/4) pregnant (blastocyst attachment stage) rabbits but was expressed in both mesometrial and antimesometrial implantation site endometrium of Day 8 pregnant animals. No expression was detected in adjacent interimplantion sites. Immunohistochemistry demonstrated UBE2Q2 expression exclusively in mesometrial and antimesometrial endometrial luminal epithelial cells of the Day 8 implantation chamber. Immunohistochemical localization of ubiquitin mirrored UBE2Q2 expression, with low-to-undetectable levels in implantation sites of Day 6(3/4) pregnant endometrium but high levels in luminal epithelial cells of Day 8 pregnant endometrium. This implantation site-specific expression of UBE2Q2 in luminal epithelial cells could play major roles in orchestrating differentiation events through the modification of specific protein substrates.  相似文献   

17.
The ubiquitin-conjugating enzymes 2C (UBE2C) is an integral component of the ubiquitin proteasome system. UBE2C consists of a conserved core domain containing the catalytic Cys residue and an N-terminal extension. The core domain is required for ubiquitin adduct formation by interacting with the ubiquitin-fold domain in the E1 enzyme, and contributes to the E3 enzyme binding. UBE2C N-terminal extension regulates E3 enzyme activity as a part of an intrinsic inhibitory mechanism. UBE2C is required for the destruction of mitotic cyclins and securin, which are essential for spindle assembly checkpoint and mitotic exit. The UBE2C mRNA and/or protein levels are aberrantly increased in many cancer types with poor clinical outcomes. Accumulation of UBE2C stimulates cell proliferation and anchorage-independent growth. UBE2C transgenic mice are prone to develop spontaneous tumors and carcinogen-induced tumor with evidence of chromosome aneuploidy.  相似文献   

18.
干扰素刺激基因15(interferon-stimulated gene 15,ISG15)编码的ISG15蛋白是最早发现的类泛素修饰蛋白。不仅干扰素和病毒感染能诱导该基因的表达,一些抗肿瘤药物也能刺激ISG15的表达。近年来,ISG15及其修饰系统与肿瘤的关系备受关注。研究证实,ISG15的激活酶E1即UBE1L与某些肿瘤的抑制有关,而其他一些成分如ISG15解聚酶UBP43则与肿瘤发生发展有关。此外,ISG15高表达与肿瘤的转移有关,ISG15对化疗药物的敏感性也有影响。本文较为全面地阐述ISG15及其修饰系统在肿瘤抑制或发生发展中的生物学作用,这将增强对ISG15与肿瘤关系的基础性认识,并为发展新的肿瘤靶向性治疗提供理论依据。  相似文献   

19.
The TRIM (tripartite motif) family of proteins is characterized by the presence of the tripartite motif module, composed of a RING domain, one or two B-box domains and a coiled-coil region. TRIM proteins are involved in many cellular processes and represent the largest subfamily of RING-containing putative ubiquitin E3 ligases. Whereas their role as E3 ubiquitin ligases has been presumed, and in several cases established, little is known about their specific interactions with the ubiquitin-conjugating E2 enzymes or UBE2s. In the present paper, we report a thorough screening of interactions between the TRIM and UBE2 families. We found a general preference of the TRIM proteins for the D and E classes of UBE2 enzymes, but we also revealed very specific interactions between TRIM9 and UBE2G2, and TRIM32 and UBE2V1/2. Furthermore, we demonstrated that the TRIM E3 activity is only manifest with the UBE2 with which they interact. For most specific interactions, we could also observe subcellular co-localization of the TRIM involved and its cognate UBE2 enzyme, suggesting that the specific selection of TRIM-UBE2 pairs has physiological relevance. Our findings represent the basis for future studies on the specific reactions catalysed by the TRIM E3 ligases to determine the fate of their targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号