首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although extracellular superoxide dismutase (EC-SOD), which scavenges the superoxide anion in extracellular spaces, has previously been implicated in the prenatal pulmonary response to oxidative stress in the developing lungs, little is currently known regarding the schematic expression pattern and the roles played by EC-SOD during embryogenesis. In an effort to characterize the pattern of EC-SOD expression during mouse organogenesis, quantitative RT-PCR, Western blotting, and in situ hybridization analyses were conducted in mouse embryos and extraembryonic tissues including placenta on embryonic days (Eds) 7.5-18.5. EC-SOD mRNA and protein were expressed in all the embryos and extraembryonic tissues examined. The mRNA level was higher in the embryos than the extraembryonic tissues on Eds 7.5-10.5, but after Ed 13.5, it evidenced an increasing pattern in the extraembryonic tissues. EC-SOD immunoreactivity also increased in the extraembryonic tissues after Ed 13.5. During organogenesis, EC-SOD mRNA was expressed principally in the ectoplacental cone, amnion, and neural ectoderm on Ed 7.5 and in the neural folds and primitive streak on Ed 8.5. On Eds 9.5-12.5, EC-SOD mRNA was expressed abundantly in the nervous tissues and forelimb and hindlimb buds. On Eds 13.5-18.5, EC-SOD mRNA was observed at high levels in the airway epithelium of lung, liver, the intestinal epithelium, skin, vibrissae, the metanephric corpuscle of kidney, the nasal cavity, and the labyrinth trophoblast, spongiotrophoblast, and blood cells in placenta. Our overall results indicate that EC-SOD is expressed spatiotemporally in developing embryos and surrounding extraembryonic tissues during mouse organogenesis, thus suggesting that EC-SOD may be relevant to organogenesis, playing the role of an antioxidant enzyme against endogenous and exogenous oxygen stresses.  相似文献   

2.
The balance between reactive oxygen species production and antioxidant defense enzymes in embryos is necessary for normal embryogenesis. To determine the dynamic expression profile of manganese superoxide dismutase (MnSOD) in embryos, which is an essential antioxidant enzyme in embryonic organogenesis, the expression level and distribution of MnSOD mRNA and protein were investigated in mouse embryos, as well as extraembryonic tissues on embryonic days (EDs) 7.5-18.5. MnSOD mRNA levels were remarkably high in extraembryonic tissues rather than in embryos during these periods. MnSOD protein levels were also higher in extraembryonic tissues than in embryos until ED 16.5, but the opposite trend was found after ED 17.5. MnSOD mRNA was observed in the chorion, allantois, amnion, ectoderm, ectoplacental cone and neural fold at ED 7.5 and in the neural fold, gut, ectoplacental cone, outer extraembryonic membranes and primitive heart at ED 8.5. After removing the extraembryonic tissues, the prominent expression of MnSOD mRNA in embryos was seen in the sensory organs, central nervous system and limbs on EDs 9.5-12.5 and in the ganglia, spinal cord, sensory organ epithelia, lung, blood cells and vessels, intestinal and skin epithelia, hepatocytes and thymus on EDs 13.5-18.5. Strong MnSOD immunoreactivity was observed in the choroid plexus, ganglia, myocardium, blood vessels, heapatocytes, pancreatic acinus, osteogenic tissues, brown adipose tissue, thymus and skin. These findings suggest that MnSOD is mainly produced from extraembryonic tissues and then may be utilized to protect the embryos against endogenous or exogenous oxidative stress during embryogenesis.  相似文献   

3.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

4.
The expression of the murine Prl-1 protein tyrosine phosphatase gene was examined in normal embryos from E10.5 through E18.5. Prl-1 mRNA was detected in the brain, neural tube, and dorsal root ganglia, and in several non-neuronal tissues, including the skeletal system. Heart and skeletal muscle were consistently negative. At E13.5, Prl-1 was expressed in the condensing prechondrogenic cells of the vertebrae, whereas at E18.5, Prl-1 mRNA was localized to the hypertrophic chondrocytes. The dynamic expression of Prl-1 during cartilage differentiation may suggest a functional role in skeletal development.  相似文献   

5.
The cytoplasmic Cu/Zn-superoxide dismutase (SOD1) represents along with catalase and glutathione peroxidase at the first defense line against reactive oxygen species in all aerobic organisms, but little is known about its distribution in developing embryos. In this study, the expression patterns of SOD1 mRNA in mouse embryos were investigated using real-time RT-PCR and in situ hybridization analyses. Expression of SOD1 mRNA was detected in all embryos with embryonic days (EDs) 7.5–18.5. The signal showed the weakest level at ED 12.5, but the highest level at ED 15.5. SOD1 mRNA was expressed in chorion, allantois, amnion, and neural folds at ED 7.5 and in neural folds, notochord, neuromeres, gut, and primitive streak at ED 8.5. In central nervous system, SOD1 mRNA was expressed greatly in embryos of EDs 9.5–11.5, but weakly in embryos of ED 12.5. At EDs 9.5–12.5, the expression of SOD1 mRNA was high in sensory organs such as tongue, olfactory organ (nasal prominence) and eye (optic vesicle), while it was decreased in ear (otic vesicle) after ED 10.5. In developing limbs, SOD1 mRNA was greatly expressed in forelimbs at EDs 9.5–11.5 and in hindlimbs at EDs 10.5–11.5. The signal increased in liver, heart and genital tubercle after ED 11.5. In the sections of embryos after ED 13.5, SOD1 mRNA was expressed in various tissues and especially high in mucosa and metabolically active sites such as lung, kidney, stomach, and intestines and epithelial cells of skin, whisker follicles, and ear and nasal cavities. These results suggest that SOD1 may be related to organogenesis of embryos as an antioxidant enzyme.  相似文献   

6.
GlcNAc-6-O-sulfotransferase is involved in formation of 6-sulfo-N -acetyllactosamine-containing structures such as 6-sulfo sialyl Lewis x. We investigated the mode of expression of GlcNAc-6-O-sulfotransferase during postimplantation embryogenesis in the mouse by in situ hybridization. Sulfotransferase mRNA was not detected on embryonic day (E) 6.5, while on E7.5 it was detected in the mesoderm, ectoderm, and ectoplacental cone. On E10.5, the sulfotransferase signals were mainly observed in the nervous tissue. On E12.5 and 13.5, various tissues in the process of differentiation expressed this mRNA. Several epithelial and mesenchymal tissues undergoing epithelial-mesenchymal interactions strongly expressed the mRNA. For example, in the developing tooth strong sulfotransferase mRNA expression was found only in the condensing mesenchyme on E13.5. On E13.5 and 15.5, the sites showing intense expression of the sulfotransferase again became restricted. In the brain, sulfotransferase mRNA was frequently found as discrete signals in narrow regions. These results suggest that 6-sulfo-N-acetyllactosamine structures have important roles in development. On E13.5 and 15.5, G152 (6-sulfo sialyl Lewis x antigen) was expressed in the neocortex, and AG223 (6-sulfo Lewis x antigen) in the thalamus and neocortex where the sulfotransferase signal was detected. However, in other organs, expression of these antigens did not correlate with the sulfotransferase mRNA, implicating complex nature of regulation of expression of the fucosyl 6-sulfo antigens.  相似文献   

7.

Background

Hyperthyroidism during pregnancy is treated with the antithyroid drugs (ATD) propylthiouracil (PTU) and methimazole (MMI). PTU currently is recommended as the drug of choice during early pregnancy. Yet, despite widespread ATD use in pregnancy, formal studies of ATD teratogenic effects have not been performed.

Methods

We examined the teratogenic effects of PTU and MMI during embryogenesis in mice. To span different periods of embryogenesis, dams were treated with compounds or vehicle daily from embryonic day (E) 7.5 to 9.5 or from E3.5 to E7.5. Embryos were examined for gross malformations at E10.5 or E18.5 followed by histological and micro-CT analysis. Influences of PTU on gene expression levels were examined by RNA microarray analysis.

Results

When dams were treated from E7.5 to E9.5 with PTU, neural tube and cardiac abnormalities were observed at E10.5. Cranial neural tube defects were significantly more common among the PTU-exposed embryos than those exposed to MMI or vehicle. Blood in the pericardial sac, which is a feature indicative of abnormal cardiac function and/or abnormal vasculature, was observed more frequently in PTU-treated than MMI-treated or vehicle-treated embryos. Following PTU treatment, a total of 134 differentially expressed genes were identified. Disrupted genetic pathways were those associated with cytoskeleton remodeling and keratin filaments. At E 18.5, no gross malformations were evident in either ATD group, but the number of viable PTU embryos per dam at E18.5 was significantly lower from those at E10.5, indicating loss of malformed embryos. These data show that PTU exposure during embryogenesis is associated with delayed neural tube closure and cardiac abnormalities. In contrast, we did not observe structural or cardiac defects associated with MMI exposure except at the higher dose. We find that PTU exposure during embryogenesis is associated with fetal loss. These observations suggest that PTU has teratogenic potential.  相似文献   

8.
9.
Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions.  相似文献   

10.
11.
12.
Recent studies have reported that supernumerary teeth were observed in the maxillary incisor area in several Pax6 homozygous mutant mouse and rat strains. To date, it remains unknown whether Pax6 is expressed during tooth development in any species. The study aimed to analyze the expression of Pax6 during mouse incisor and molar development. C57BL/6J mouse embryos on days E12.5, E13.5, E14.5, E16.5 and E18.5 were produced. Heads from these embryos, as well as from P1.5 mice, were processed for paraffin wax embedding (N ≥ 3 for each stage) and prepared for immunohistochemistry. Pax6 immunostaining was found in all tooth germs examined. At the E12.5 dental placode, E13.5 bud stage, E14.5 cap stage and E16.5 early bell stage, Pax6 was expressed in ectodermally derived tissues of tooth germs and oral epithelia adjacent to the tooth germs. Cells in the underlying dental ectomesenchyme that showed Pax9 expression were Pax6 negative. At E18.5 and P1.5, Pax6 was expressed in more differentiated ameloblasts and cells of the stratum intermedium and stellate reticulum that were derived from the oral epithelium, as well as in mesenchyme-derived differentiated odontoblasts. Pax6 expression was also observed in the submandibular gland, tongue filiform papilla and hair follicle at E16.5 and P1.5. The present study demonstrated that Pax6 was expressed in incisor and molar germs during mouse tooth development. The results provide a basis for exploring the function of Pax6 during tooth development.  相似文献   

13.
14.
15.
16.
Deletion of selenoprotein P alters distribution of selenium in the mouse   总被引:15,自引:0,他引:15  
Selenoprotein P (Se-P) contains most of the selenium in plasma. Its function is not known. Mice with the Se-P gene deleted (Sepp(-/-)) were generated. Two phenotypes were observed: 1) Sepp(-/-) mice lost weight and developed poor motor coordination when fed diets with selenium below 0.1 mg/kg, and 2) male Sepp(-/-) mice had sharply reduced fertility. Weanling male Sepp(+/+), Sepp(+/-), and Sepp(-/-) mice were fed diets for 8 weeks containing <0.02-2 mg selenium/kg. Sepp(+/+) and Sepp(+/-) mice had similar selenium concentrations in all tissues except plasma where a gene-dose effect on Se-P was observed. Liver selenium was unaffected by Se-P deletion except that it increased when dietary selenium was below 0.1 mg/kg. Selenium in other tissues exhibited a continuum of responses to Se-P deletion. Testis selenium was depressed to 19% in mice fed an 0.1 mg selenium/kg diet and did not rise to Sepp(+/+) levels even with a dietary selenium of 2 mg/kg. Brain selenium was depressed to 43%, but feeding 2 mg selenium/kg diet raised it to Sepp(+/+) levels. Kidney was depressed to 76% and reached Sepp(+/+) levels on an 0.25 mg selenium/kg diet. Heart selenium was not affected. These results suggest that the Sepp(-/-) phenotypes were caused by low selenium in testis and brain. They strongly suggest that Se-P from liver provides selenium to several tissues, especially testis and brain. Further, they indicate that transport forms of selenium other than Se-P exist because selenium levels of all tissues except testis responded to increases of dietary selenium in Sepp(-/-) mice.  相似文献   

17.
SePP (selenoprotein P) is central for selenium transport and distribution. Targeted inactivation of the Sepp gene in mice leads to reduced selenium content in plasma, kidney, testis and brain. Accordingly, activities of selenoenzymes are reduced in Sepp(-/-) organs. Male Sepp(-/-) mice are infertile. Unlike selenium deficiency, Sepp deficiency leads to neurological impairment with ataxia and seizures. Hepatocyte-specific inactivation of selenoprotein biosynthesis reduces plasma and kidney selenium levels similarly to Sepp(-/-) mice, but does not result in neurological impairment, suggesting a physiological role of locally expressed SePP in the brain. In an attempt to define the role of liver-derived circulating SePP in contrast with locally expressed SePP, we generated Sepp(-/-) mice with transgenic expression of human SePP under control of a hepatocyte-specific transthyretin promoter. Secreted human SePP was immunologically detectable in serum from SEPP1-transgenic mice. Selenium content and selenoenzyme activities in serum, kidney, testis and brain of Sepp(-/-;SEPP1) (SEPP1-transgenic Sepp(-/-)) mice were increased compared with Sepp(-/-) controls. When a selenium-adequate diet (0.16-0.2 mg/kg of body weight) was fed to the mice, liver-specific expression of SEPP1 rescued the neurological defects of Sepp(-/-) mice and rendered Sepp(-/-) males fertile. When fed on a low-selenium diet (0.06 mg/kg of body weight), Sepp(-/-;SEPP1) mice survived 4 weeks longer than Sepp(-/-) mice, but ultimately developed the neurodegenerative phenotype. These results indicate that plasma SePP derived from hepatocytes is the main transport form of selenium supporting the kidney, testis and brain. Nevertheless, local Sepp expression is required to maintain selenium content in selenium-privileged tissues such as brain and testis during dietary selenium restriction.  相似文献   

18.
Three cold shock domain (CSD) family members (YB-1, MSY2, and MSY4) exist in vertebrate species ranging from frogs to humans. YB-1 is expressed throughout embryogenesis and is ubiquitously expressed in adult animals; it protects cells from senescence during periods of proliferative stress. YB-1-deficient embryos die unexpectedly late in embryogenesis (embryonic day 18.5 [E18.5] to postnatal day 1) with a runting phenotype. We have now determined that MSY4, but not MSY2, is also expressed during embryogenesis; its abundance declines substantially from E9.5 to E17.5 and is undetectable on postnatal day 1(adult mice express MSY4 in testes only). Whole-mount analysis revealed similar patterns of YB-1 and MSY4 RNA expression in E11.5 embryos. To determine whether MSY4 delays the death of YB-1-deficient embryos, we created and analyzed MSY4-deficient mice and then generated YB-1 and MSY4 double-knockout embryos. MSY4 is dispensable for normal development and survival, but the testes of adult mice have excessive spermatocyte apoptosis and seminiferous tubule degeneration. Embryos doubly deficient for YB-1 and MSY4 are severely runted and die much earlier (E8.5 to E11.5) than YB-1-deficient embryos, suggesting that MSY4 indeed shares critical cellular functions with YB-1 in the embryonic tissues where they are coexpressed.  相似文献   

19.
This study reports establishment of an in vitro culture system for E5.5 mouse embryos that supports development to the gastrulation stage and allows the use of experimental approaches to study gastrulation during mouse embryogenesis. Recent experiments suggest that the extraembryonic tissues may play a critical role for gastrulation from as early as E5.5. To apply whole embryo culture to E5.5 embryos and analyze gastrulation, it is essential to optimize the conditions so that most of the embryos develop to the gastrulation stage in culture. For this purpose, we established a protocol in which embryos were isolated using micromanipulator and cultured with 50-75% rat serum. Although cultured embryos tended to grow a larger extraembryonic portion, more than 80% of them developed the primitive streak and induce mesoderm, which corresponds to the mid-streak stage.  相似文献   

20.
The endothelial cell surface receptor thrombomodulin (TM) inhibits blood coagulation by forming a complex with thrombin, which then converts protein C into the natural anticoagulant, activated protein C. In mice, a loss of TM function causes embryonic lethality at day 8.5 p.c. (post coitum) before establishment of a functional cardiovascular system. At this developmental stage, TM is expressed in the developing vasculature of the embryo proper, as well as in non-endothelial cells of the early placenta, giant trophoblast and parietal endoderm. Here, we show that reconstitution of TM expression in extraembryonic tissue by aggregation of tetraploid wild-type embryos with TM-null embryonic stem cells rescues TM-null embryos from early lethality. TM-null tetraploid embryos develop normally during midgestation, but encounter a secondary developmental block between days 12.5 and 16.5 p.c. Embryos lacking TM develop lethal consumptive coagulopathy during this period, and no live embryos are retrieved at term. Morphogenesis of embryonic blood vessels and other organs appears normal before E15. These findings demonstrate a dual role of TM in development, and that a loss of TM function disrupts mouse embryogenesis at two different stages. These two functions of TM are exerted in two distinct tissues: expression of TM in non-endothelial extraembryonic tissues is required for proper function of the early placenta, while the absence of TM from embryonic blood vessel endothelium causes lethal consumptive coagulopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号