首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Themicroenvironmentconstitutedbythymicstromalcellsisanimportantsiteforthedevelopmentofthymocytes.95%ofthymocytesdieinthethymuseveryday,inthewayofapoptosis[1].Thecelldeathismainlycausedbythedefaultofpositiveselectionandtheactionofnegativeselectionswhichar…  相似文献   

2.
He XY  Li J  Qian XP  Fu WX  Li Y  Wu L  Chen WF 《Cell research》2004,14(2):125-133
Mouse thymic stromal cell line 4 (MTSC4) is one of the stromal cell lines established in our laboratory. While losing the characteristics of epithelial cells, they express some surface markers shared with thymic dendritic cells (TDCs). To further study the biological functions of these cells, we compared the capability of MTSC4 with TDCs in the induction of thymocyte apoptosis, using thymic reaggregation culture system. Apoptosis of thymocytes induced by MTSC4 and TDCs was measured by Annexin V and PI staining and analyzed by flow cytometry. We found that MTSC4 selectively augmented the apoptosis of CD4^ 8^ (DP) thymocytes. This effect was Fas/FasL independent and could not be blocked by antibodies to MHC class I and class II molecules. In addition, MTSC4 enhanced the apoptosis of DP thymocytes from different strains of mice, which implies that MTSC4-induced thymocyte apoptosis is not mediated by the TCR recognition of self peptide/MHC molecules. In contrast to MTSC4, thymocyte apoptosis induced by TDCs was MHC-restricted. Thus, MHC-independent fashion of stromal-DP thymocyte interaction may be one of the ways to induce thymocyte apoptosis in thymus. Our study has also shown that the interaction of MTSC4 stromal cells and thymocytes is required for the induction of thymocyte apoptosis.  相似文献   

3.
Apoptoticthymocytesweredetectedinsituinthethymus[1],whiletheeffectsofthymicstromalcellsontheprocessofcelldeathofthymocytesarestillunclear.Wepreviouslyfoundthatmousethymicdendriticcells(MTSC4)enhancedtheapoptosisofthymocytesinvitro[2],andtheseeffectsweredep…  相似文献   

4.
We previously reported that mice implanted with mammary tumors show a progressive thymic involution that parallels the growth of the tumor. The involution is associated with a severe depletion of CD4+8+ thymocytes. We have investigated three possible mechanisms leading to this thymic atrophy: 1) increased apoptosis, 2) decreased proliferation, and 3) disruption of normal thymic maturation. The levels of thymic apoptosis were determined by propidium iodide and annexin V staining. A statistically significant, but minor, increase in thymic apoptosis in tumor-bearing mice was detected with propidium iodide and annexin V staining. The levels of proliferation were assessed by in vivo labeling with 5'-bromo-2'-deoxyuridine (BrdU). The percentages of total thymocytes labeled 1 day following BrdU injection were similar in control and tumor-bearing mice. Moreover, the percentages of CD4-8- thymocytes that incorporated BrdU during a short term pulse (5 h) of BrdU were similar. Lastly, thymic maturation was evaluated by examining CD44 and CD25 expression among CD4-8- thymocytes. The percentage of CD44+ cells increased, while the percentage of CD25+ cells decreased among CD4-8- thymocytes from tumor-bearing vs control animals. Together, these findings suggest that the thymic hypocellularity seen in mammary tumor bearers is not due to a decreased level of proliferation, but, rather, to an arrest at an early stage of thymic differentiation along with a moderate increase in apoptosis.  相似文献   

5.
Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT)-expressing thymic stromal cells (TDLacZ). The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII). When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR) transgenic reactive against LacZ (BgII), there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells.  相似文献   

6.
The maturation of CD4+8- and CD4-8+ thymocytes from CD4+8+ thymocytes is dependent on the mandatory interaction of their alpha beta TCR with selecting ligands expressed on thymic epithelial cells (TE). This is referred to as positive selection. The deletion of CD4+8+ thymocytes that express autospecific TCR (negative selection) is mediated primarily by bone marrow-derived cells. Previous studies have shown that TE is relatively ineffective in mediating the deletion of CD4+8- thymocytes expressing autospecific TCR but TE can render them anergic, i.e., nonresponsive, to the self Ag. The mechanism by which anergy is induced in these cells is unknown. In this study, we used thymocytes expressing a transgenic TCR specific for the male Ag presented by H-2Db class I MHC molecules to examine how expression of the deleting ligand by TE affects thymocyte development and phenotype. The development of female TCR-transgenic thymocytes was examined in irradiated male hosts or in female hosts that had received male fetal thymic epithelial implants. It was observed that the development of transgenic-TCR+ thymocytes was affected in mice with male TE. CD4+8+ thymocytes with reduced CD8 expression and markedly enhanced transgenic TCR expression accumulated in mice with male TE. Development of CD4-8+ thymocytes was also affected in these mice in that fewer were present and they expressed an intermediate CD8 coreceptor level. These CD4-8+ thymocytes expressed a high level of the transgenic TCR, retained the ability to respond to anti-TCR antibodies, but were nonresponsive to male APC. However, the maturation of CD4+8- thymocytes, which are also derived from CD4+8+ precursor cells, was relatively unaffected. In an in vitro assay for assessing negative selection, male TE failed to delete CD4+8+ thymocytes expressing the transgenic TCR under conditions where they were efficiently deleted by male dendritic cells. Collectively these results support the conclusion that male TE was inefficient in mediating deletion. Furthermore, expression of the deleting ligand on thymic epithelium interferes with the maturation of functional male-specific T cells and results in the accumulation of CD4+8+ and CD4-8+ thymocytes expressing a lower level of the CD8 coreceptor but a high level of the transgenic TCR.  相似文献   

7.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

8.
利用Boyden小室法和FACS分析法,我们分析了五株小鼠胸腺基质细胞系(MTSC)培养上清液对中性粒细胞,单核巨噬细胞和淋巴细胞的化学趋化因子(Chemokines)活性,及定向迁移的淋巴细胞中B细胞、CD 4~ CD 8~-和CD4~-CD8~ T细胞的比例。结果显示,五株MTSC的培养上清液对上述靶细胞均有不同程度的趋化作用.MTSC细胞分泌趋化因子的情况可分为三类:1.MTEC 1和MTEC 2产生的Chemokine(s)对中性粒细胞和淋巴细胞的趋化作用相对较强;2.MTDC 4分泌的Chemokine(s)主要作用于单核巨噬细胞;3.MTEC 3和MTEC 5分泌的Chemokine(s)对多种类型的靶细胞,包括中性粒细胞、单核巨噬细胞和淋巴细胞,表现的趋化作用没有明显的强弱之分。MTSC-SN对B细胞的趋化活性普遍高于对T细胞的趋化活性,对CD 4~-CK 8~ T细胞的趋化活性高于对CD 4~ CD 8~-T细胞的趋化活性。MTSC-SN中趋化因子的分析,有利于新型chemokines的发现及其生物功能的阐明,并可进一步研究Chemok-ine(s)在T细胞发育中的作用。  相似文献   

9.
A vast majority of thymocytes are eliminated during T cell development by apoptosis. However, apoptotic thymocytes are not usually found in the thymus, indicating that apoptotic thymocytes must be eliminated rapidly by scavengers. Although macrophages and dendritic cells are believed to play such role, little is known about scavengers in the thymus. We found that CD4(+)/CD11b(+)/CD11c(-) cells were present in the thymus and that they expressed costimulatory molecules for T cell selection and possessed Ag-presenting activity. Moreover, these CD4(+)/CD11b(+) cells phagocytosed apoptotic thymocytes much more efficiently than thymic CD4(-)/CD11b(+) cells as well as activated peritoneal macrophages. CD4(+)/CD11b(+) cells became larger along with thymus development, while no such change was observed in CD4(-)/CD11b(+) cells. Finally, engulfed nuclei were frequently found in CD4(+)/CD11b(+) cells. These results strongly suggest that thymic CD4(+)/CD11b(+) cells are major scavengers of apoptotic thymocytes.  相似文献   

10.
11.
Expression of ets genes in mouse thymocyte subsets and T cells   总被引:27,自引:0,他引:27  
The cellular ets genes (ets-1, ets-2, and erg) have been identified by their sequence similarity with the v-ets oncogene of the avian erythroblastosis virus, E26. Products of the ets-2 gene have been detected in a wide range of normal mouse tissues and their expression appears to be associated with cell proliferation in regenerating liver. In contrast, the ets-1 gene was previously shown to be more highly expressed in the mouse thymus than in other tissues. Because the thymic tissue contains various subsets of cells in different stages of proliferation and maturation, we have examined ets gene expression in fetal thymocytes from different stages of development, in isolated subsets of adult thymocytes, and in peripheral T lymphocytes. Expression of the ets-1 gene was first detected at day 18 in fetal thymocytes, corresponding to the first appearance of CD4+ (CD4+, CD8-) thymocytes, and reaches maximal/plateau levels of expression in the thymus at 1 to 2 days after birth. The ets-2 gene expression is detected at least 1 day earlier, coinciding with the presence of both double-positive (CD4+, CD8+) and double-negative (CD4-, CD8-) blast thymocytes and reaches maximal/plateau levels 1 day before birth. In the adult thymus, ets-1 and ets-2 mRNA expression is 10- to 8-fold higher respectively in the CD4+ subset than in the other subsets examined. Higher levels of p55 ets-1 protein were also shown to exist in the CD4+ subset. Because the CD4+ thymic subset is the pool from which the CD4+ peripheral, helper/inducer T cells are derived, the ets gene expression was examined in lymph node T cells. Both the CD4+ and the CD8+ T cells subsets had lower ets RNA levels than the CD4+ thymocytes. These results suggest that ets-2 and more particularly ets-1 gene products play an important role in T cell development and differentiation and are not simply associated with proliferating cells, which are observed at a higher frequency in fetal thymocytes, or dull Ly-1 (low CD5+), and double-negative (CD4-, CD8-) adult thymocytes. Selectively enhanced expression of ets-1 gene may be observed in thymic CD4+ thymocytes because these cells have uniquely encountered MHC class II or other Ag in the thymic environment. These cells may have been subsequently stimulated to activate the ets genes in conjunction with their differentiation of helper/inducer function(s) and expression of mature TCR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The present study investigates the expression of VLA-4 on thymocytes at various stages of maturation and their capacity to adhere to thymic stromal cells. Whole thymocytes were stained with anti-CD4 and anti-CD8, as well as anti-VLA-4 antibodies. Flow microfluorometric analyses revealed that a) most of CD4-8- (double negative DN) and CD4-8intermediate thymocyte populations expressed large amounts of VLA-4, b) the levels of VLA-4 were considerably and markedly reduced on CD4+8+ (double positive DP) and single positive (SP) (CD4+8- or CD4-8+) populations, respectively. This contrasted with an increase in the levels of LFA-1 along with thymocyte maturation. DN, DP, and SP subsets were isolated and examined for their capacity to express VLA-4 and to adhere to fibronectin (FN) molecules as well as thymic stromal cells expressing FN. DN, DP, and SP subsets were confirmed to express the respective high, low, and very low levels of VLA-4, respectively. Approximately 70% of DN thymocytes became bound to FN-precoated culture plates, whereas 30 to 40% of DP and only 10 to 20% of SP cells adhered to FN. Similar patterns of adhesion were observed between these thymocyte subsets and thymic stromal monolayers. The binding of the DN subset to FN-plates or thymic stromal monolayers was inhibited only marginally by the RGDS peptide, but was efficiently inhibited by V10 peptide (cell-binding sequence that is located in the V region on FN and reacts with the VLA-4 integrin) or anti-VLA-4 antibody. Anti-VLA-4 antibody plus RGDS peptide strongly inhibited DN cell binding to FN-coated plates and thymic stromal monolayers. These results indicate that i) VLA-4 expressed on DN thymocytes functions as an important integrin for interacting with thymic stromal cells; ii) the expression level of this integrin decreases with the progress of thymocyte maturation, and iii) most of the mature thymocytes (SP) are rendered less adhesive to thymic stromal cells by reducing the level of VLA-4 expression.  相似文献   

13.
The expression on adult mouse thymocytes of a T cell antigen receptor beta-chain epitope, recognized by the antibody F23.1, has been studied by three-color flow cytometry. Low density F23.1 staining was found mainly on CD4+8+ thymocytes. High density staining was mainly on CD4+8- and CD4-8+ cells. Variable proportions of CD4-8- cells were also F23.1+. Among CD4-8+ cells, F23.1 was expressed only on the J11d- subset with mature T cell function. We conclude that many subpopulations of thymocytes express antigen receptors and are candidates for the population subject to thymic selection, but at present no single subpopulation makes a convincing claim.  相似文献   

14.
CD83 expression influences CD4+ T cell development in the thymus   总被引:10,自引:0,他引:10  
Fujimoto Y  Tu L  Miller AS  Bock C  Fujimoto M  Doyle C  Steeber DA  Tedder TF 《Cell》2002,108(6):755-767
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.  相似文献   

15.
Thymic rosettes, structures consisting of 3-30 thymic lymphoid cells attached to a central macrophage or dendritic cell, were released from mouse thymus tissue by collagenase digestion. They were shown to be preexistent structures within the thymus, but to be subject to extensive exchange with free thymocytes under certain conditions. An isolation procedure was developed, using a new technique of zonal unit-gravity elutriation, which minimized exchange and produced a completely pure sample of the larger rosettes. The rosette-associated thymocytes were analyzed by two- and three-color immunofluorescent staining and flow cytometry. The dominant cell type was a small, CD4+CD8+, cortical-type thymocyte. However, all of the established thymus subpopulations defined by CD4 and CD8, including CD4-CD8+ and CD4+CD8- mature thymocytes and CD4-CD8- early thymocytes, were also present in rosettes. Very few of the cells present were of an intermediate or transitional phenotype. Rosette-associated thymocytes were somewhat enriched in large dividing thymocytes, in CD4-CD8- thymocytes, and in mature thymocytes expressing the T-cell antigen receptor-CD3 complex. Their most striking characteristic was a marked depletion in small thymocytes lacking surface H-2K expression, a major population among free thymocytes. The physiological role of the rosette structure is discussed, and it is suggested that the heterogeneity of the associated thymocytes in part reflects the existence of different types of rosettes in different areas of the thymus.  相似文献   

16.
The myelopoietic inducing potential of mouse thymic stromal cells   总被引:1,自引:0,他引:1  
The thymus has generally been considered as being solely involved in T cell maturation. In this study we have demonstrated that mouse thymic stroma can also support myelopoiesis. Bone marrow from mice treated with 5-fluorouracil was depleted of cells expressing Mac-1, CD4, and CD8 and incubated on lymphocyte-free monolayer cultures of adherent thymic stromal cells. After 7 days there was a marked increase in nonadherent cells, the majority of which were Mac-1+, FcR+, and HSA+. These proliferating bone marrow cells also expressed markers (MTS 17 and MTS 37) found on thymic stromal cells. Such cells were not found in thymic cultures alone, in bone marrow cultured alone, or on control adherent cell monolayers. Supernatants from the cultured thymic stroma, however, were able to induce these cell types in the bone marrow precursor population. Incubation of normal thymocytes with a monolayer of these in vitro cultivated Mac-1+, MTS 17+, MTS 37+ myeloid cells leads to selective phagocytosis of CD4+ CD8+ cells. Hence, this study demonstrates that the thymic adherent cells can induce myelopoiesis in bone marrow-derived precursor cells and provide a form of self-renewal for at least one population of thymic stromal cells. Furthermore, these induced cells are capable of selective phagocytosis of CD4+ CD8+ thymocytes and may provide one mechanism for the selective removal of such cells from the thymus.  相似文献   

17.
A profound thymic atrophy has been observed in mice bearing large adenocarcinomas of the mammary gland. Only 2 to 5% of thymocytes remained 4 wk after tumor implantation. Although there is a slight decrease in the overall percentages of Thy-1+ cells in tumor bearers, the majority of the remaining cells are of a Thy-1 low phenotype. There was a lower percentage of double positive (CD4+, CD8+) cells, an increase of CD4+ CD8- thymocytes, similar percentages of CD4- CD8+ cells and double negative (CD4- CD8-) thymocytes in tumor-bearing mice. In addition, an increased percentage of CD3 cells could be detected in these animals. These results indicate that proportionally less immature thymocytes are present in the atrophic thymuses of mammary tumor bearers. Enhanced levels of glucocorticoids are known to produce similar effects on the thymus. However, adrenalectomy of mice followed by tumor implantation did not result in reversal of the thymic atrophy. Furthermore, a study of serum corticosterone levels in tumor bearers indicated no significant changes during tumorigenesis. A study of several parameters of bone marrow (BM) populations indicate that there is an increase in cells of the granulocyte-macrophage lineage and a decrease in lymphocytes induced by tumor-derived granulocyte macrophage-CSF. An alteration of prothymocytes in the BM is not the main cause of the thymic atrophy because BM cells from normal and tumor-bearing mice reconstituted irradiated normal mice equally well. There was no preferential recruitment of double positive cells to the spleen as indicated by no significant differences in the levels of T cells of immature phenotype including the CD4+ CD8+ population in the spleens of tumor bearers. Because no major changes were observed in tumor bearers, either at their capacity to repopulate the thymus or at the patterns of subsequent redistribution of thymocytes, it was postulated that the thymic atrophy may be caused by a direct or indirect effect of the tumor or tumor-associated factor(s). Intrathymic injections of tumor cells into young normal recipient mice resulted in a significant reduction of the thymus weight and cellularity. These data suggest that mammary tumors can secrete factor(s) that are capable of severely impairing the normal development of cells of the T cell lineage.  相似文献   

18.
Thymic myoid cells correspond to a muscle-like cell population present in the thymic medulla. They are well conserved throughout species evolution, but their biological role is not known. We demonstrated that myoid cells protected thymocytes from apoptosis as evidenced by a strong decrease of annexin-V-FITC positive thymocytes. This effect was (1) specific of myoid cells compared to thymic epithelial cells; (2) dependent on direct cell-to-cell contacts and (3) triggered rapidly after 2 h in cocultures. This protective phenomenon was due to the activation of prosurvival mechanisms. Indeed, myoid cells activated extracellular-regulated kinases (ERK1/2) and Akt in thymocytes. Myoid cells also influenced thymocyte maturation. We observed an increase in CD4(+) and a decrease in CD8(+) single positive (SP) thymocytes when cocultured with myoid cells, independently of a CD8(+)SP increased death or a CD4(+)SP overproliferation. Consequently, thymic myoid cells protect thymocytes from apoptosis and could also modulate their differentiation process.  相似文献   

19.
In pre-Talpha (pTalpha) gene-deleted mice, the positively selectable CD4+ CD8+ double-positive thymocyte pool is only 1% that in wild-type mice. Consequently, their peripheral T cell compartment is severely lymphopenic with a concomitant increase in proportion of CD25+ FoxP3+ regulatory T cells. Using mixed bone marrow chimeras, where thymic output was 1% normal, the pTalpha(-/-) peripheral T cell phenotype could be reproduced with normal cells. In the pTalpha(-/-) thymus and peripheral lymphoid organs, FoxP3+ CD4+ cells were enriched. Parabiosis experiments showed that many pTalpha(-/-) CD4+ single-positive thymocytes represented recirculating peripheral T cells. Therefore, the enrichment of FoxP3+ CD4+ single-positive thymocytes was not solely due to increased thymic production. Thus, the pTalpha(-/-) mouse serves as a model system with which to study the consequences of chronic decreased thymic T cell production on the physiology of the peripheral T cell compartment.  相似文献   

20.
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3-CD4-CD8-, CD4+CD8+, and CD3highCD4-CD8+ thymocytes but is down-regulated on approximately 40% of CD3highCD4+CD8- thymocytes. Expression on peripheral TCR-alphabeta+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2-/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8- thymocytes and TCR-gamma delta+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号