首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Disheveled (Dvl) is a key regulator of both the canonical Wnt and the planar cell polarity (PCP) pathway. Previous genetic studies in mice indicated that outflow tract (OFT) formation requires Dvl1 and 2, but it was unclear which pathway was involved and whether Dvl1/2-mediated signaling was required in the second heart field (SHF) or the cardiac neural crest (CNC) lineage, both of which are critical for OFT development. In this study, we used Dvl1/2 null mice and a set of Dvl2 BAC transgenes that function in a pathway-specific fashion to demonstrate that Dvl1/2-mediated PCP signaling is essential for OFT formation. Lineage-specific gene-ablation further indicated that Dvl1/2 function is dispensable in the CNC, but required in the SHF for OFT lengthening to promote cardiac looping. Mutating the core PCP gene Vangl2 and non-canonical Wnt gene Wnt5a recapitulated the OFT morphogenesis defects observed in Dvl1/2 mutants. Consistent with genetic interaction studies suggesting that Wnt5a signals through the PCP pathway, Dvl1/2 and Wnt5a mutants display aberrant cell packing and defective actin polymerization and filopodia formation specifically in SHF cells in the caudal splanchnic mesoderm (SpM), where Wnt5a and Dvl2 are co-expressed specifically. Our results reveal a critical role of PCP signaling in the SHF during early OFT lengthening and cardiac looping and suggest that a Wnt5a→ Dvl PCP signaling cascade may regulate actin polymerization and protrusive cell behavior in the caudal SpM to promote SHF deployment, OFT lengthening and cardiac looping.  相似文献   

2.
A sub-population of the neural crest is known to play a crucial role in development of the cardiac outflow tract. Studies in avians have mapped the complete migratory pathways taken by 'cardiac' neural crest cells en route from the neural tube to the developing heart. A cardiac neural crest lineage is also known to exist in mammals, although detailed information on its axial level of origin and migratory pattern are lacking. We used focal cell labelling and orthotopic grafting, followed by whole embryo culture, to determine the spatio-temporal migratory pattern of cardiac neural crest in mouse embryos. Axial levels between the post-otic hindbrain and somite 4 contributed neural crest cells to the heart, with the neural tube opposite somite 2 being the most prolific source. Emigration of cardiac neural crest from the neural tube began at the 7-somite stage, with cells migrating in pathways dorsolateral to the somite, medial to the somite, and between somites. Subsequently, cardiac neural crest cells migrated through the peri-aortic mesenchyme, lateral to the pharynx, through pharyngeal arches 3, 4 and 6, and into the aortic sac. Colonisation of the outflow tract mesenchyme was detected at the 32-somite stage. Embryos homozygous for the Sp2H mutation show delayed onset of cardiac neural crest emigration, although the pathways of subsequent migration resembled wild type. The number of neural crest cells along the cardiac migratory pathway was significantly reduced in Sp2H/Sp2H embryos. To resolve current controversy over the cell autonomy of the splotch cardiac neural crest defect, we performed reciprocal grafts of premigratory neural crest between wild type and splotch embryos. Sp2H/Sp2H cells migrated normally in the +/+ environment, and +/+ cells migrated normally in the Sp2H/Sp2H environment. In contrast, retarded migration along the cardiac route occurred when either Sp2H/+ or Sp2H/Sp2H neural crest cells were grafted into the Sp2H/Sp2H environment. We conclude that the retardation of cardiac neural crest migration in splotch mutant embryos requires the genetic defect in both neural crest cells and their migratory environment.  相似文献   

3.
In vertebrate embryos, neural crest cells migrate only through the anterior half of each somite while avoiding the posterior half. We demonstrate that neural crest cells express the receptor neuropilin 2 (Npn2), while its repulsive ligand semaphorin 3F (Sema3f) is restricted to the posterior-half somite. In Npn2 and Sema3f mutant mice, neural crest cells lose their segmental migration pattern and instead migrate as a uniform sheet, although somite polarity itself remains unchanged. Furthermore, Npn2 is cell autonomously required for neural crest cells to avoid Sema3f in vitro. These data show that Npn2/Sema3f signaling guides neural crest migration through the somite. Interestingly, neural crest cells still condense into segmentally arranged dorsal root ganglia in Npn2 nulls, suggesting that segmental neural crest migration and segmentation of the peripheral nervous system are separable processes.  相似文献   

4.
The recessive mutant mouse jumonji (jmj), obtained by a gene trap strategy, shows neural tube defects in approximately half of homozygous embryos with a BALB/cA and 129/Ola mixed background, but no neural tube defects with BALB/cA, C57BL/6J, and DBA/2J backgrounds. Here, we show that neural tube and cardiac defects are observed in all embryos with a C3H/HeJ background. In addition, abnormal groove formation and prominent flexure are observed on the neural plate with full penetrance, suggesting that abnormal groove formation leads to neural tube defects. We found morphogenetic abnormalities in the bulbus cordis (future outflow tract and the right ventricle) of homozygous embryo hearts. Moreover, myocytes in the ventricular trabeculae show hyperplasia with cells filling the ventricles. Together with the observation that the jmj gene is expressed in the neural epithelium of the head neural plate and in myocytes in the bulbus cordis and trabeculae, the results show that the jmj gene plays essential roles in the normal development of the neural plate, morphogenesis of bulbus cordis, and proliferation of trabecular myocytes on a C3H/He background.  相似文献   

5.
Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3 −/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3 −/− and LtapLp/+ mutants, Dvl3 +/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.  相似文献   

6.
During neural tube closure, Pax3 is required to inhibit p53-dependent apoptosis. Pax3 is also required for migration of cardiac neural crest (CNC) from the neural tube to the heart and septation of the primitive single cardiac outflow tract into the aorta and pulmonary arteries. Whether Pax3 is required for CNC migration and outflow tract septation by inhibiting p53-dependent apoptosis is not known. In this study, mouse strains carrying reporters linked to Pax3 alleles were used to map the fate of CNC cells in embryos which were either Pax3-sufficient (expressing one or two functional Pax3 alleles) or Pax3-deficient (expressing two null Pax3 alleles), and in which p53 had been inactivated or not. Migrating CNC cells were observed in both Pax3-sufficient and -deficient embryos, but CNC cells were sparse and disorganized in Pax3-deficient embryos as migration progressed. The defective migration was associated with increased cell death. Suppression of p53, either by null mutation of the p53 gene, or administration of a p53 inhibitor, pifithrin-alpha, prevented the defective CNC migration and apoptosis in Pax3-deficient embryos, and also restored proper development of cardiac outflow tracts. These results indicate that Pax3 is required for cardiac outflow tract septation because it blocks p53-dependent processes during CNC migration.  相似文献   

7.
8.
9.
During development, facial branchiomotor (FBM) neurons, which innervate muscles in the vertebrate head, migrate caudally and radially within the brainstem to form a motor nucleus at the pial surface. Several components of the Wnt/planar cell polarity (PCP) pathway, including the transmembrane protein Vangl2, regulate caudal migration of FBM neurons in zebrafish, but their roles in neuronal migration in mouse have not been investigated in detail. Therefore, we analyzed FBM neuron migration in mouse looptail (Lp) mutants, in which Vangl2 is inactivated. In Vangl2(Lp/+) and Vangl2(Lp/Lp) embryos, FBM neurons failed to migrate caudally from rhombomere (r) 4 into r6. Although caudal migration was largely blocked, many FBM neurons underwent normal radial migration to the pial surface of the neural tube. In addition, hindbrain patterning and FBM progenitor specification were intact, and FBM neurons did not transfate into other non-migratory neuron types, indicating a specific effect on caudal migration. Since loss-of-function in some zebrafish Wnt/PCP genes does not affect caudal migration of FBM neurons, we tested whether this was also the case in mouse. Embryos null for Ptk7, a regulator of PCP signaling, had severe defects in caudal migration of FBM neurons. However, FBM neurons migrated normally in Dishevelled (Dvl) 1/2 double mutants, and in zebrafish embryos with disrupted Dvl signaling, suggesting that Dvl function is essentially dispensable for FBM neuron caudal migration. Consistent with this, loss of Dvl2 function in Vangl2(Lp/+) embryos did not exacerbate the Vangl2(Lp/+) neuronal migration phenotype. These data indicate that caudal migration of FBM neurons is regulated by multiple components of the Wnt/PCP pathway, but, importantly, may not require Dishevelled function. Interestingly, genetic-interaction experiments suggest that rostral FBM neuron migration, which is normally suppressed, depends upon Dvl function.  相似文献   

10.
Curly tail (ct/ct) mouse embryos, which have a genetic predisposition for neural tube defects (NTD), were grown in culture from the 2-5 somite stage, before the initiation of neurulation, up to the 22-24 somite stage, when closure of the anterior neural tube is normally complete. The embryos were cultured in whole rat serum or in extensively dialysed serum supplemented with glucose, amino acids, and vitamins, with inositol omitted or added at concentrations of 2, 10, 20, and 50 mg/l. Two strains were used as controls; CBA mice, which are related to curly tails, and an unrelated PO stock. It was found that ct/ct embryos were particularly sensitive to inositol deficiency; both they and the CBA embryos showed a similar high incidence of cranial NTD after culture in inositol deficient medium (12/17 and 11/18, respectively). Furthermore, the lowest dose of inositol had no effect on the frequency of head defects in ct/ct mice, though it halved the incidence in CBA embryos. With higher inositol concentrations, the majority of ct/ct embryos completed head closure normally, and their development was generally similar to that obtained in whole serum. PO embryos showed a lower proportion (5/19) of cranial NTD in the inositol deficient medium than the other two strains, and this was further reduced by even the lowest inositol dose.  相似文献   

11.
12.
The Notch pathway plays multiple roles during vertebrate somitogenesis, functioning in the segmentation clock and during rostral/caudal (R/C) somite patterning. Lunatic fringe (Lfng) encodes a glycosyltransferase that modulates Notch signaling, and its expression patterns suggest roles in both of these processes. To dissect the roles played by Lfng during somitogenesis, a novel allele was established that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng(DeltaFCE1)). In the absence of oscillatory Lfng expression, Notch activation is ubiquitous in the PSM of Lfng(DeltaFCE1) embryos. Lfng(DeltaFCE1) mice exhibit severe segmentation phenotypes in the thoracic and lumbar skeleton. However, the sacral and tail vertebrae are only minimally affected in Lfng(DeltaFCE1) mice, suggesting that oscillatory Lfng expression and cyclic Notch activation are important in the segmentation of the thoracic and lumbar axial skeleton (primary body formation), but are largely dispensable for the development of sacral and tail vertebrae (secondary body formation). Furthermore, we find that the loss of cyclic Lfng has distinct effects on the expression of other clock genes during these two stages of development. Finally, we find that Lfng(DeltaFCE1) embryos undergo relatively normal R/C somite patterning, confirming that Lfng roles in the segmentation clock are distinct from its functions in somite patterning. These results suggest that the segmentation clock may employ varied regulatory mechanisms during distinct stages of anterior/posterior axis development, and uncover previously unappreciated connections between the segmentation clock, and the processes of primary and secondary body formation.  相似文献   

13.
Mice genetically deficient for the telomerase RNA (mTR) can be propagated for only a limited number of generations. In particular, mTR-/- mice of a mixed C57BL6/129Sv genetic background are infertile at the sixth generation and show serious hematopoietic defects. Here, we show that a percentage of mTR-/- embryos do not develop normally and fail to close the neural tube, preferentially at the forebrain and midbrain. The penetrance of this defect increases with the generation number, with 30% of the mTR-/- embryos from the fifth generation showing the phenotype. Moreover, mTR-/- kindreds in a pure C57BL6 background are only viable up to the fourth generation and also show defects in the closing of the neural tube. Cells derived from mTR-/- embryos that fail to close the neural tube have significantly shorter telomeres and decreased viability than their mTR-/- littermates with a closed neural tube, suggesting that the neural tube defect is a consequence of the loss of telomere function. The fact that the main defect detected in mTR-/- embryos is in the closing of the neural tube, suggests that this developmental process is among the most sensitive to telomere loss and chromosomal instability.  相似文献   

14.
15.
Septation of the single tubular embryonic outflow tract into two outlet segments in the heart requires the precise integration of proliferation, differentiation and apoptosis during remodeling. Lack of proper coordination between these processes would result in a variety of congenital cardiac defects such as those seen in the retinoid X receptor alpha knockout (Rxra(-/-)) mouse. Rxra(-/-) embryos exhibit lethality between embryonic day (E) 13.5 and 15.5 and harbor a variety of conotruncal and aortic sac defects making it an excellent system to investigate the molecular and morphogenic causes of these cardiac malformations. At E12.5, before the embryonic lethality, we found no qualitative difference between wild type and Rxra(-/-) proliferation (BrdU incorporation) in outflow tract cushion tissue but a significant increase in apoptosis as assessed by both TUNEL labeling in paraffin sections and caspase activity in trypsin-dispersed hearts. Additionally, E12.5 embryos demonstrated elevated levels of transforming growth factor beta2 (TGFbeta2) protein in multiple cell lineages in the heart. Using a whole-mouse-embryo culture system, wild-type E11.5 embryos treated with TGFbeta2 protein for 24 hours displayed enhanced apoptosis in both the sinistroventralconal cushion and dextrodorsalconal cushion in a manner analogous to that observed in the Rxra(-/-). TGFbeta2 protein treatment also led to malformations in both the outflow tract and aortic sac. Importantly, Rxra(-/-) embryos that were heterozygous for a null mutation in the Tgfb2 allele exhibited a partial restoration of the elevated apoptosis and of the malformations. This was evident at both E12.5 and E13.5. The data suggests that elevated levels of TGFbeta2 can (1) contribute to abnormal outflow tract morphogenesis by enhancing apoptosis in the endocardial cushions and (2) promote aortic sac malformations by interfering with the normal development of the aorticopulmonary septum.  相似文献   

16.
Numerous studies have demonstrated that the midbrain and cerebellum develop from a region of the early neural tube comprising two distinct territories known as the mesencephalon (mes) and rostral metencephalon (met; rhombomere 1), respectively. Development of the mes and met is thought to be regulated by molecules produced by a signaling center, termed the isthmic organizer (IsO), which is localized at the boundary between them. FGF8 and WNT1 have been implicated as key components of IsO signaling activity, and previous studies have shown that in Wnt1(-/-) embryos, the mes/met is deleted by the 30 somite stage ( approximately E10) (McMahon, A. P. and Bradley, A. (1990) Cell 62, 1073-1085). We have studied the function of FGF8 in mouse mes/met development using a conditional gene inactivation approach. In our mutant embryos, Fgf8 expression was transiently detected, but then was eliminated in the mes/met by the 10 somite stage ( approximately E8.75). This resulted in a failure to maintain expression of Wnt1 as well as Fgf17, Fgf18, and Gbx2 in the mes/met at early somite stages, and in the absence of the midbrain and cerebellum at E17.5. We show that a major cause of the deletion of these structures is ectopic cell death in the mes/met between the 7 and 30 somite stages. Interestingly, we found that the prospective midbrain was deleted at an earlier stage than the prospective cerebellum. We observed a remarkably similar pattern of cell death in Wnt1 null homozygotes, and also detected ectopic mes/met cell death in En1 null homozygotes. Our data show that Fgf8 is part of a complex gene regulatory network that is essential for cell survival in the mes/met.  相似文献   

17.
18.
The enteric nervous system (ENS) is mainly derived from vagal neural crest cells (NCC) that arise at the level of somites 1-7. To understand how the size and composition of the NCC progenitor pool affects ENS development, we reduced the number of NCC by ablating the neural tube adjacent to somites 3-6 to produce aganglionic gut. We then back-transplanted various somite lengths of quail neural tube into the ablated region to determine the 'tipping point', whereby sufficient progenitors were available for complete ENS formation. The addition of one somite length of either vagal, sacral or trunk neural tube into embryos that had the neural tube ablated adjacent to somites 3-6, resulted in ENS formation along the entire gut. Although these additional cells contributed to the progenitor pool, the quail NCC from different axial levels retained their intrinsic identities with respect to their ability to form the ENS; vagal NCC formed most of the ENS, sacral NCC contributed a limited number of ENS cells, and trunk NCC did not contribute to the ENS. As one somite length of vagal NCC was found to comprise almost the entire ENS, we ablated all of the vagal neural crest and back-transplanted one somite length of vagal neural tube from the level of somite 1 or somite 3 into the vagal region at the position of somite 3. NCC from somite 3 formed the ENS along the entire gut, whereas NCC from somite 1 did not. Intrinsic differences, such as an increased capacity for proliferation, as demonstrated in vitro and in vivo, appear to underlie the ability of somite 3 NCC to form the entire ENS.  相似文献   

19.
Glucocorticoid-induced gene-1 (Gig1) was identified in a yeast one-hybrid screen for factors that interact with the MyoD core enhancer. The Gig1 gene encodes a novel C2H2 zinc finger protein that shares a high degree of sequence similarity with two known DNA binding proteins in humans, Glut4 enhancer factor and papillomavirus binding factor (PBF). The mouse ortholog of PBF was also isolated in the screen. The DNA binding domain of Gig1, which contains TCF-E-tail CR1 and CR2 motifs shown to mediate promoter specificity of TCF-E-tail isoforms, was mapped to a C-terminal domain that is highly conserved in Glut4 enhancer factor and PBF. In mouse embryos, in situ hybridization revealed a restricted pattern of expression of Gig1 that overlaps with MyoD expression. A nuclear-localized lacZ knockin null allele of Gig1 was produced to study Gig1 expression with greater resolution and to assess Gig1 functions. X-gal staining of Gig1(nlacZ) heterozygous embryos revealed Gig1 expression in myotomal myocytes, skeletal muscle precursors in the limb, and in nascent muscle fibers of the body wall, head and neck, and limbs through E14.5 (latest stage examined). Gig1 was also expressed in a subset of Scleraxis-positive tendon precursors/rudiments of the limbs, but not in the earliest tendon precursors of the somite (syndetome) defined by Scleraxis expression. Additional regions of Gig1 expression included the apical ectodermal ridge, neural tube roof plate and floor plate, apparent motor neurons in the ventral neural tube, otic vesicles, notochord, and several other tissues representing all three germ layers. Gig1 expression was particularly well represented in epithelial tissues and in a number of cells/tissues of neural crest origin. Expression of both the endogenous MyoD gene and a reporter gene driven by MyoD regulatory elements was similar in wild-type and homozygous null Gig1(nlacZ) embryos, and mutant mice were viable and fertile, indicating that the functions of Gig1 are redundant with other factors.  相似文献   

20.
Somitogenesis requires bilateral rhythmic segmentation of paraxial mesoderm along the antero-posterior axis. The location of somite segmentation depends on opposing signalling gradients of retinoic acid (generated by retinaldehyde dehydrogenase-2; Raldh2) anteriorly and fibroblast growth factor (FGF; generated by Fgf8) posteriorly. Retinoic-acid-deficient embryos exhibit somite left-right asymmetry, but it remains unclear how retinoic acid mediates left-right patterning. Here, we demonstrate that retinoic-acid signalling is uniform across the left-right axis and occurs in node ectoderm but not node mesoderm. In Raldh2(-/-) mouse embryos, ectodermal Fgf8 expression encroaches anteriorly into node ectoderm and neural plate, but its expression in presomitic mesoderm is initially unchanged. The late stages of somitogenesis were rescued in Raldh2(-/-) mouse embryos when the maternal diet was supplemented with retinoic acid until only the 6-somite stage, demonstrating that retinoic acid is only needed during node stages. A retinoic-acid-reporter transgene marking the action of maternal retinoic acid in rescued Raldh2(-/-) embryos revealed that the targets of retinoic-acid signalling during somitogenesis are the node ectoderm and the posterior neural plate, not the presomitic mesoderm. Our findings suggest that antagonism of Fgf8 expression by retinoic acid occurs in the ectoderm and that failure of this mechanism generates excessive FGF8 signalling to adjacent mesoderm, resulting initially in smaller somites and then left-right asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号