首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phycological research in the development of the Chinese seaweed industry   总被引:3,自引:3,他引:0  
Chengkui  Zeng 《Hydrobiologia》1984,116(1):7-18
The term seaweed industry is employed in a broad sense and includes production both of commercial seaweeds such as Laminaria and Porphyra by phycoculture and of processed seaweed products, such as algin, agar and carrageenan.Before the founding of the People's Republic, China had a very insignificant seaweed industry, producing small quantities of the purple laver Porphyra and the glueweed Gloiopeltis by the primitive rock-cleaning method and the kelps Laminaria and Undaria by the primitive stone-throwing method, both aiming at enhancing the growth of the wild seaweeds. Also, a small quantity of agar was manufactured by the traditional Japanese method of gelling, freezing, thawing and drying the product. The small production was not sufficient to meet the demand of the Chinese people who for ages have appreciated seaweeds and their products for food. Therefore, large quantities of seaweeds and seaweed products had to be imported from various countries, for instance, Eucheuma and Gracilaria from Indonesia and other southeastern Asian countries, Laminaria and agar from Japan, even Porphyra from the USA. Annual Laminaria import from Japan generally amounted to over 10 000 tons and in some years approached 20 000–30 000 tons. Some quantities of the glueweed Gloiopeltis and the vermifuge weed Digenea simplex were exported, mainly to Japan.Since the founding of the People's Republic of China in October, 1949, China has exerted efforts to build up a self-supporting seaweed industry. Now after a lapse of 30-some years, a sizable seaweed industry has been developed. China is now able to produce by phycoculture more than one million tons of fresh seaweeds, including Laminaria, Undaria, Porphyra, Eucheuma, Gracilaria etc. and several thousand tons of seaweed extracts, including algin, agar, carrageenan, mannitol and iodine. At present, China still imports some quantities of seaweeds and seaweed products from various countries but is able to produce sufficient quantities to meet the people's need and even to export some quantities of the seaweeds Laminaria, Undaria and Porphyra and the seaweed products algin and mannitol.At the Tenth International Seaweed Symposium, I presented a paper on the Marine Phycoculture of China, in which I emphasized on the methods of cultivation (Tseng 1981b). Therefore I would like to take this opportunity to supplement the last lecture by presenting a paper on the role of phycological research in the development of China's seaweed industry.  相似文献   

2.
Svirski  E.  Beer  S.  Friedlander  M. 《Hydrobiologia》1993,(1):391-396
Ulva cf. lactuca has been a disturbing competitor of experimental Gracilaria conferta outdoor cultures in Israel. The effect of environmental conditions on the competitive ability of Ulva versus Gracilaria, and the main limiting factors for which these seaweeds compete, were studied here. Single and biculture experiments of both seaweeds showed that Ulva outgrew and damaged Gracilaria under all irradiance and temperature combinations. The higher competitive ability of Ulva cf. lactuca in bicultures was not a result of responses to shading or nitrogen shortage, but rather to a shortage of available inorganic carbon, an increase in pH and apparent excretions of Ulva which inhibited the growth of Gracilaria.  相似文献   

3.
The commercial exploitation of seaweeds for use as food and for the production of agar, alginate and carrageenan is outlined. The quantities of seaweed harvested for each purpose are tabulated and discussed. Seaweeds for food are derived chiefly from China, Japan and Korea, with almost 94% obtained by cultivation. Alginophytes are collected in 15 countries but six of these account for more than 80% of the total harvest; all are from natural stocks except for a large quantity of Laminaria cultivated in China. Natural carrageenophytes, from 12 countries, now account for only 20% of the total harvest; the remainder is cultivated Eucheuma species, 99% of which is produced in only two countries, the Philippines and Indonesia. Of the four categories of commercial resources of seaweeds considered, agarophytes are spread more evenly over a greater number of countries; they come from 20 countries and only five of these are minor contributors to the total. Gelidium species are particularly important because of the high quality agar they yield; their distribution and location are discussed.  相似文献   

4.
Abstract

Macroalgae have played an important role in coastal communities for centuries. In the past, they have been harvested and gathered from shorelines around the world for traditional uses such as food, animal feed and a crude fertilizer (marine manure). Today, seaweeds are used in a multitude of applications with expanding global industries based on hydrocolloids, cosmetics and food supplements, and also as a potential biofuel source. However, of the approximately 10?000 algal species reported to exist, only a small number are commercially utilized. While representing only a small fraction of total global seaweed production, harvesting and gathering ‘wild’ seaweeds has had, and continues to have, an integral role in many coastal societies, often being intrinsically linked to the cultural identity of those coastal communities. Today, 32 countries actively harvest seaweeds from wild stocks, with over 800?000 t harvested annually from natural beds. It is vitally important that seaweeds are utilized sustainably and that natural resources are effectively managed by coastal communities with vested interests around the world. As the popularity of seaweeds increases and the use of less traditional species with novel applications comes to the fore, it is critically important to make certain that the sustainability of the resource is ensured given the increased pressures of harvesting. Issues exist regarding ownership of the resource and its over-exploitation, and the implementation of environmentally damaging harvesting techniques must be avoided. Resource scientists, managers, conservationists, governments, and other stakeholders need to be proactive in the sustainable management of these vulnerable, yet valuable, resources.  相似文献   

5.
Harvested by coastal populations for centuries, seaweeds have played an important role in the economy of a number of countries. In Brazil, they occur along the coastline, but are more diversified and abundant from the northeast to a portion of the southeast coast. Historically, the seaweed industry in Brazil is based on seaweed harvesting of natural beds. This practice continues to this day in a number of coastal communities in Northeastern Brazil. Since the 1960s, species of the genera Gracilaria and Hypnea have been collected in the intertidal zone for extraction of agar and carrageenan. Maximum production was achieved in 1973–1974, a period in which the country exported around 2000 t annually (dry weight) to Japan. Later (1977–1979), there was a sharp drop and annual exports fell to 250 t (dry weight). In 1981, Brazil exported only 150 t of dried seaweed for agar extraction. Between 1990 and 2000, overexploitation, decline in a number of agarophyte populations, poor quality, low price, and lack of a socioeconomic policy led to the almost total disappearance of this industry in Northeastern Brazil. Seaweed harvesting on natural beds is currently in decline, and the population that depended on this resource had to migrate or convert to other economic activities, such as fishing, aquaculture, and underwater tourism. However, the promising results obtained in pilot projects (Gracilaria and Kappaphycus) show that Brazil has significant potential as a seaweed biomass producer.  相似文献   

6.
World-wide use and importance of Gracilaria   总被引:8,自引:8,他引:0  
The world's first source of agar, from the middle of the seventeenth century, was Gelidium from Japan, but by the beginning of the twentieth century demand for the phycocolloid exceeded of the supply of this alga. Since then Gracilaria has played an important role in the production of agar. Currently agars are obtained from five genera in three orders of red algae and marketed as ‘natural agar’ in squares or strips or as ‘industrial agar’ in powder form. The development of production processes through alkaline hydrolysis of sulphates has allowed a good quality food agar to be obtained from Gracilaria. This does not show the synergistic reaction with locust bean gum apparent with Gelidium agar. The term ‘agaroids’ is applied to Gracilaria agars produced without alkaline hydrolysis of sulphates, with greater sulphate content and much less gel strength. Unlike Gelidium, Gracilaria has to be processed in a short period of time and cannot be allowed to remain in storage for use during years of lower availability. Statistics of imports of agarophytes to Japan during the last 10 years give an indication of the state of the market. During this period there was a marked reduction in Gracilaria imports, mainly from Chile, but also the Philippines, Indonesia and South Africa, mainly due to the overall increase in the capacity of agar production in Gracilaria-producing countries.  相似文献   

7.
There are about 15 species of Gracilaria reported in Vietnam. Of these, Gracilaria asiatica Zhang et Xia is being cultivated on a large scale in Northern Vietnam, which has a subtropical climate. During the rainy season, from May to October, the growth of G. asiatica is drastically reduced or even ceases due to very low salinity and high temperature. Therefore, it is important to improve the tolerance of G. asiatica to a wide range of salinity and temperatures. This paper presents the results of research on strain improvement of G. asiatica using irradiation and selection media. Three irradiation doses of 20, 60, and 100 krad were tested against the control (with no irradiation). Afterward, the seaweed biomass was cultivated on a selected medium, ESS-1, containing NaCl in concentrations of 23‰ (C1) and 0‰ (C2). The results showed that a higher survival rate of G. asiatica was observed with the 20- and 60-krad doses. The protein content and composition of selected seaweeds were analyzed and compared with the control. SDS-PAGE showed no remarkable difference in the protein composition between the control and irradiated samples. However, the 67-kDa protein band of seaweed treated with 20 and 60 krad, then grown on ESS-1 medium with 23% NaCl, had a higher density than other samples. This protein was reported to play an important role in G. asiatica, by enhancing its tolerance to variable salinity and temperature. Although the organic and inorganic content of all samples remained almost the same, the content and quality of agar extracted from irradiated seaweeds were higher than those of the controls. Due to the high amount of 3.6 anhydro-α-L-galactose combined with low amounts of sulfate found in irradiated seaweeds, the freezing and melting points of extracted agar were lower. Eventually, this resulted in higher condensation and better quality of agar, such as in its gel-forming ability. The quality of fluid agar extracted from selected seaweeds improved as shown in the remarkable decrease in Ca2+, Mg2+, and total Fe ion content, thus lowering its melting point compared with the control. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

8.
Land-based abalone aquaculture in South Africa, based on the local species Haliotis midae, started in the early 1990s and has grown rapidly in the last decade, with 13 commercial farms now producing over 850 t per annum. Over 6,000 t per annum of kelp Ecklonia maxima are now harvested for this purpose, and some kelp beds are reaching maximum sustainable limits. Research into seaweed aquaculture as feed (Ulva and some Gracilaria) for abalone started in the late 1990s on the southeast coast (where there are no kelp beds) using abalone waste water. A growing body of evidence suggests that a mixed diet of kelp plus other seaweeds can give growth rates at least as good as compound feed, and can improve abalone quality and reduce parasite loads. A pilot scale Ulva lactuca and abalone integrated recirculation unit using 25% recirculation was designed and built on the south west coast of South Africa using one 12,000-L abalone tank containing 13,200 15 ± 2.5 g abalone, connected to two 3,000-L seaweed tanks containing an initial starting biomass of 10 kg of seaweed, replicated 3 times. In an 18-month period, there were no significant differences in abalone health or growth rates, sediment build up and composition, mobile macro fauna densities and species between the recirculation or the flow-through units. Transfer of oxygen generated by the seaweeds to the abalone tanks was poor, resulting in the recirculated abalone tanks having lower (33%) dissolved oxygen concentrations than a comparable flow-through abalone unit. Seaweed nutrient content and specific growth rates in the units were comparable to seaweeds cultivated in fertilized effluent (SGR = 3.2 ± 3.4%.day−1; Yield = 0.2 ± 0.19 kg.m2.day−1). Indications were that at this low recirculation ratio the seaweeds in the units were nutrient limited and that there were no negative effects to the abalone being cultivated in such a recirculation unit at this recirculation ratio.  相似文献   

9.
An overview of seaweed resources in Chile   总被引:6,自引:0,他引:6  
The seaweed harvest in Chile has doubled during the past decade, and export values have increased by 300% because of diversification and increase in the volume of products with greater value added. The export value of seaweed products increased from US $18 million in 1980 to $52 million in 1991. During the past decade, the successful cultivation of Gracilaria was implemented, and this has compensated for the large decrease in yields from natural beds. In the short term, it will be necessary to develop techniques for the cultivation of other resources such as Iridaea, Gigartina, Lessonia and Gelidium. Alternative biotechnological methods must also be developed, such as the use of Gracilaria strains with increased quality and production for growth in cultivation centers.  相似文献   

10.
There are 25 genera and 76 species of economically important marine algae found in the Hengchun Peninsula. The greatest number of useful species is found in the Rhodophyta. Sargassum is the most common genus of the Phaeophyta and has the largest biomass and the widest distribution, but fewer useful species. The local people harvest seaweeds from natural beds for food, fodder, fish bait, fertilizer and medical purposes. However, only a few of the available seaweeds are used and in small quantities. Most of the species are seasonal and more abundant in spring and winter than in the summer. Four genera,Sargassum,Enteromorpha,Ulva andCodium have large standing crops and are widely distributed in the coastal water. Production of the other genera is lower. There are many other useful seaweeds present in this area, some of which are also used as landscape plants in aquaria and as fertilizer in horticulture. The potential commercial uses forHalymenia microcarpa are also briefly discussed.  相似文献   

11.
Ajisaka  Tetsuro  Chiang  Young-Meng 《Hydrobiologia》1993,260(1):335-338
The recent decrease in Gracilaria culture production and value in Taiwan were evaluated from statistical data and from interviews with local fishermen. Reasons are: 1) during 1986–87, many Gracilaria culture ponds were transformed to grow grass shrimp (Penaeus monodon) in monoculture, but disease of the shrimp occurring soon after stopped such production and Gracilaria culture took over, but 2) due to manpower shortage, Gracilaria-farmers prefer to sell their crops to abalone farmers and not to agar factories. Since Gracilaria as abalone feed is cheeper than for agar production, the value of algal crop decreased.  相似文献   

12.
Recent developments in the seaweed aquaculture industries of Pacific islands are reviewed from the perspective of technical, production, geographic, marketing, species-diversification, socio-economic and institutional-support advances. Successful commercial aquaculture of seaweeds in the Pacific island region is presently based on two species, Kappaphycus alvarezii in Kiribati, Fiji and Solomon Islands, and Cladosiphon sp. in Tonga. It is possible that other candidate species could be considered for aquaculture for food (e.g. Caulerpa racemosa or Meristotheca procumbens) or extraction of agar (Gracilaria), although further research on the technical feasibility of aquaculture methods to produce sufficient tonnage, and particularly on their marketing, is needed. While the Pacific island region may be environmentally ideal for seaweed aquaculture, the limitations of distance from main centres and distance from markets, vulnerability to world price fluctuations, and socio-economic issues, make it unlikely that the Pacific Island region will ever rival the scale of Asian seaweed production. Regional seaweed farming can nevertheless make a useful contribution to supplement other sources of income, and can be an important economic boost for isolated outer islands where few alternative income-generating opportunities exist.  相似文献   

13.
This study determined the rate at which nitrogen accumulated in seaweeds is released during decomposition and the effect of temperature on their rates of decomposition and nitrogen release. Gracilaria verrucosa and Ulva lactuca decomposed rapidly in outdoor mesocosms. Ulva, but not Gracilaria, became nitrogen-enriched during decomposition. Maximal weekly rates of nitrogen release were 5.91 ± 2.23 and 6.37 ± 2.59 g N m?2 d?1, respectively for Gracilaria and Ulva. Temperature had a significant effect on the decomposition rate of Gracilaria in a laboratory experiment: decomposition was greater at 30 °C than at 25 °C. No net decomposition was observed at 16 °C. Gracilaria became nitrogen enriched at 30 °C, but not at 16° or 25°. The release of stored nutrients from decaying seaweeds should be included in nutrient budgets and models when seaweed standing stocks are significant. Seaweed source-sink relationships are important ecologically and can be applied to attempts at using seaweeds as environmental monitors of anthropogenic eutrophication and to efforts of cultivating seaweeds for the improvement of water quality.  相似文献   

14.
Rotmann  K. W. G. 《Hydrobiologia》1990,204(1):325-330
Since World War II the greater Saldanha Bay lagoon system, South Africa, has been an important Gracilaria producer. Two agar factories, built in the 1960's, used Gracilaria from Saldanha Bay as their raw material. In the early 1970's the industry was destroyed as a result of dredging and marine construction operations to establish a harbor in the bay for loading ore. These environmental changes destroyed stocks and prevented the previously significant beachings of the seaweed from occurring. After a few years of no or very low commercial production, the resource slowly started to recover. The size of Gracilaria drifts increased over the following eight years to approximately one-third of the original output. This trend seems to continue. Although the stocks and resultant drifts are unlikely to recover fully to their original quantity, current production is already sufficient to ensure re-establishment of a seaweed industry in Saldanha Bay. This could have considerable socio-economic impact on the area.  相似文献   

15.
The extent and biomass of the Gracilaria beds in the Lüderitz Bay area, Namibia were surveyed in winter and summer. The beds covered most of the suitable sediments available (grain size 106–212 μm) and did not occur in water shallower than 1 m or deeper than 11 m. Total surface area, most of which occurred in the Bay system, changed very little from winter to summer but biomass increased by 3.5 fold. In winter, total Gracilaria biomass was 200 t and 650 t and in summer, 150 t and 2850 t respectively in the Lagoon and Bay. Maximum biomass occurred at 3–4 m in the Lagoon and 5–6 m in the Bay in both winter and summer. Gracilaria beach cast data from 1987 to 1991 for the area were analysed for seasonality and, depending on the specific site, correlated with swell, southerly wind velocity and sea temperature. Beach cast in the Lagoon system is a more continuous process than in the Bay, where beach casts at most sites follow an annual pattern. Wind driven currents and chop were the most important causative parameters of beach cast in the Lagoon whereas the depth at which the plants were growing and swell were more important in the Bay system. The two systems viz. Lagoon and Bay are independent of one another with very little or no exchange of Gracilaria between them. This was evidenced by the similar percentage each contributes to the total beach cast and the similar pattern of beach cast from year to year. The decrease in total beach cast from 1989 to the end of the study period was attributed to a trend towards increasing swell height and low sea temperatures in 1991.  相似文献   

16.
Toth GB  Karlsson M  Pavia H 《Oecologia》2007,152(2):245-255
Herbivory on marine macroalgae (seaweeds) in temperate areas is often dominated by relatively small gastropods and crustaceans (mesoherbivores). The effects of these herbivores on the performance of adult seaweeds have so far been almost exclusively investigated under artificial laboratory conditions. Furthermore, several recent laboratory studies with mesoherbivores indicate that inducible chemical resistance may be as common in seaweeds as in vascular plants. However, in order to further explore and test the possible ecological significance of induced chemical resistance in temperate seaweeds, data are needed that address this issue in natural populations. We investigated the effect of grazing by littorinid herbivorous snails (Littorina spp.) on the individual net growth of the brown seaweed Ascophyllum nodosum in natural field populations. Furthermore, the capacity for induced resistance in the seaweeds was assessed by removing herbivores and assaying for relaxation of defences. We found that ambient densities of gastropod herbivores significantly reduced net growth by 45% in natural field populations of A. nodosum. Seaweeds previously exposed to grazing in the field were less consumed by gastropod herbivores in feeding bioassays. Furthermore, the concentration of phlorotannins (polyphenolics), which have been shown to deter gastropod herbivores, was higher in the seaweeds that were exposed to gastropod herbivores in the field. This field study corroborates earlier laboratory experiments and demonstrates that it is important to make sure that the lack of experimental field data on marine mesoherbivory does not lead to rash conclusions about the lack of significant effects of these herbivores on seaweed performance. The results strongly suggest that gastropods exert a significant selection pressure on the evolution of defensive traits in the seaweeds, and that brown seaweeds can respond to attacks by natural densities of these herbivores through increased chemical resistance to further grazing.  相似文献   

17.
Environmental variation and large-scale Gracilaria production   总被引:3,自引:3,他引:0  
Pizarro  A.  Santelices  B. 《Hydrobiologia》1993,260(1):357-363
Temporal and spatial abiotic variation in seaweed farms should be anticipated to maximize production through alternative exploitation strategies. This study describes the basic assumptions and the most relevant data used to empirically develop a production model aimed at improving prediction and increasing production of Gracilaria farms in northern Chile. Continuous light and temperature recordings since 1986 have allowed us to relate abiotic variations with high production seasons of Gracilaria or with the presence of pests and epiphytes. Much of the interannual variations in light and temperature appear as part of a predictable pattern of change between ENSO (El Niño/Southern Oscillation) and inter-ENSO years. Production has been found to be a function of stock density and harvesting frequency, two parameters that can be effectively manipulated in the field. Thus, the range of climatic change now can be anticipated to some extent which, in turn, suggests the best farming strategy. During seasons or growth periods anticipated to be highly productive, farming activities are oriented to maintain high percentage removal of the stock through frequent harvesting. During seasons anticipated to be low in production, activities are oriented to prevent biomass losses due to the blooms of epiphytes and pests and to secure stocks to renew through planting the damaged parts of the beds after the blooms.  相似文献   

18.
Epiphytes can have a considerable effect on Gracilaria production, and Ulva is one of the commonest algal species identified as an epiphyte, reaching loads of 60% (g of epiphytes per g of Gracilaria) in the intertidal cultures of southern Chile. This study evaluates the relative importance of light reduction, addition of weight to the host thalli and nutrient depletion, as mechanisms determining the interaction effects of Ulva epiphytes on Gracilaria cultivation. Using field experiments undertaken during the main Gracilaria growth season (spring), we evaluate the mechanisms of epiphyte-host algae interaction by manipulating artificial epiphytes. The results indicate that Ulva can significantly depress Gracilaria biomass production and that the addition of weight to the host algae and the consequent dislodgement increase, appear to be the main mechanisms involved in the Ulva-Gracilaria interaction. However, the light reduction caused by the epiphytes can also partially explain the reduction in Gracilaria production. Nutrients depletion would not appear to fully account for the detrimental effects of Ulva over Gracilaria in intertidal farming areas of southern Chile.  相似文献   

19.
Summary An associational plant refuge occurs when a plant that is susceptible to herbivory gains protection from herbivory when it is associated with another plant. In coastal North Carolina, the abundance of the palatable red alga Gracilaria tikvahiae is positively correlated with the abundance of the unpalatable brown alga Sargassum filipendula during times of increased herbivore activity. To see if grazing by the sea urchin Arbacia punctulata could generate this pattern, controlled experiments were conducted in out-door microcosms and in the laboratory. Gracilaria beneath a canopy of Sargassum was eaten significantly less than Gracilaria alone. When Arbacia were excluded, Gracilaria alone grew significantly more than Gracilaria beneath Sargassum, demonstrating that Sargassum is a competitor of Gracilaria. Experiments investigating Sargassum's deterrent role indicated that Sargassum decreased the foraging range of Arbacia and the rate at which it fed on Gracilaria. Additional experiments with plastic Sargassum mimics indicated that the decreased grazing on Gracilaria was not a result of Sargassum morphology, but was probably attributable to some chemical characteristic of Sargassum. The pattern of increased grazing in monocultures (only Gracilaria present) versus polycultures (both Gracilaria and Sargassum present) demonstrated in this study also has been demonstrated for plant-insect interactions in terrestrial communities. In these communities, insect density is higher in monocultures than in polycultures because insects find and immigrate to monocultures more rapidly, and once in a monoculture, they emigrate from them less often than from polycultures. In this study, urchins did not find and immigrate to monocultures more rapidly, nor did they tend to stay in them once they were found; in fact, they emigrated from monocultures of Gracilaria more rapidly than from Gracilaria and Sargassum polycultures. Increased grazing in Gracilaria monocultures resulted from increased rates of movement and feeding of individual herbivores, not from increased herbivore density as has been reported for terrestrial systems.  相似文献   

20.
Algal biotechnology industries and research activities in China   总被引:14,自引:0,他引:14  
In old China there were very few people engaged in the study of the algae,but in new China, freshwater and marine algae are studied by over onehundred old and new phycologists. There is now an algal biotechnologyindustry consisting of an aquaculture industry, producing large amounts ofthe seaweeds Laminaria, Porphyra, Undaria, Gracilaria,eucheumoids, and the microalgae Dunaliella and Spirulina. There is also a phycocolloid industry, producing algin, agar andcarrageenan; an industry producing chemicals and drugs, such as iodine,mannitol, phycocyanin, -carotene, PSS (propylene glycol alginatesulfate) and FPS (fucose-containing sulfated polysaccharides) and anindustry producing food, feed and fertilizer. The Laminariacultivation industry produces about 900,000 t dry Laminaria,probably the largest producer in the world and 13,000 t algin,undoubtedly one of the largest algin producer in the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号