首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been persisting controversy over the role of photosynthesis in the stimulation of the plasma membrane H+-ATPase and growth of dicotyledonous leaves by light. To investigate this, we compared the effects of light on growth, H+ net efflux and membrane potential (Vm) of strips which contained either only chlorophyll-free (white) mesophyll cells or chlorophyll-containing (green) cells cut from variegated Coleus leaves. White mesophyll cells responded to white, blue and red light with a hyperpolarization of Vm, an acidification of the apoplast and a promotion of growth, all of which began after a lag of 2–7 min. In contrast, green mesophyll cells showed a biphasic light response in which the hyperpolarization and the acidification were preceded by a rapid depolarization of Vm and an alkalinization of the apoplast. Nevertheless, green and white tissues showed comparable growth promotions in response to light. The light response of the leaf mesophyll is a composite of two separate photosystems. The initial depolarization and alkalinization are mediated by photosynthesis and blocked by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The slower hyperpolarization, acidification and growth response, on the other hand, are clearly in response to light absorption by pigments other than chlorophyll. Received: 11 February 2000 / Accepted: 2 May 2000  相似文献   

2.
Light transiently depolarizes the membrane of growing leaf cells. The ionic basis for changes in cell membrane electrical potentials in response to light has been determined separately for growing epidermal and mesophyll cells of the argenteum mutant of pea (Pisum sativum L.). In mesophyll cells light induces a large, transient depolarization that depends on the external Cl concentration, is unaffected by changes in the external Ca2+ or K+ concentration, is stimulated by K+-channel blockers tetraethylammonium (TEA+) and Ba2+, and is inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU). In isolated epidermal tissue, light induces a small, transient depolarization followed by a hyperpolarization of the membrane potential. The depolarization is enhanced by increasing the external Ca2+ concentration and by addition of Ba2+, and is not sensitive to DCMU. Epidermal cells in contact with mesophyll display a depolarization resembling the response of the underlying mesophyll cells. The light-induced depolarization in mesophyll cells seems to be mediated by an increased efflux of Cl while the membrane-potential changes in epidermal strips reflect changes in the fluxes of Ca2+ and in the activity of the proton-pumping ATPase.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - CCCP carbonylcyanide m-chlorophenylhydrazone - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - LID e light-induced depolarization in epidermal cells - LID m light-induced depolarization in mesophyll cells - LIH light-induced hyperpolarization - TEA+ tetraethylammonium Ecotrans paper #43. This research was supported by National Science Foundation grants DCB-8903744 and MCB-9220110 to E.V.  相似文献   

3.
《遗传学报》2022,49(8):715-725
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.  相似文献   

4.
This study sought to investigate effects of short-chain fatty acids and CO2 on intracellular pH (pHi) and mechanisms that mediate pHi recovery from intracellular acidification in cultured ruminal epithelial cells of sheep. pHi was studied by spectrofluorometry using the pH-sensitive fluorescent indicator 2′,7′-bis (carboxyethyl)-5(6′)-carboxyfluorescein acetoxymethyl ester (BCECF/AM). The resting pHi in N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)-buffered solution was 7.37 ± 0.03. In HEPES-buffered solution, a NH4 +/NH3-prepulse (20 mM) or addition of butyrate (20 mM) led to a rapid intracellular acidification (P < 0.05). Addition of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; 10 μM) or HOE-694 (200 μM) inhibited pHi recovery from an NH4 +/NH3-induced acid load by 58% and 70%, respectively. pHi recovery from acidification by butyrate was reduced by 62% and 69% in the presence of EIPA (10 μM) and HOE-694 (200 μM), respectively. Changing from HEPES- (20 mM) to CO2/HCO3 -buffered (5%/20 mM) solution caused a rapid decrease of pHi (P < 0.01), followed by an effective counter-regulation. 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS; 100 μM) blocked the pHi recovery by 88%. The results indicate that intracellular acidification by butyrate and CO2 is effectively counter-regulated by an Na+/H+ exchanger and by DIDS-sensitive, HCO3 -dependent mechanism(s). Considering the large amount of intraruminal weak acids in vivo, both mechanisms are of major importance for maintaining the pHi homeostasis of ruminal epithelial cells. Accepted: 8 March 2000  相似文献   

5.
Li J  Wang X  Zhang Y  Jia H  Bi Y 《Planta》2011,234(4):709-722
3′,5′-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na+/K+ ratio and a decrease in gene expression of the plasma membrane (PM) H+-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H2O2 or CaCl2 alleviated the NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing the PM H+-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H2O2 by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H2O2 on ionic homeostasis was abolished when Ca2+ was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA, a Ca2+ chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H2O2 accumulation in salt stress, and Ca2+ was necessary in the cGMP-mediated signaling pathway. H2O2, as the downstream component of cGMP signaling pathway, stimulated PM H+-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.  相似文献   

6.
We measured the rate of growth, osmotic pressure, hydraulic conductance, longitudinal and transverse extensibility of barley (Hordeum vulgare L.) roots in Knop solution with nitrate and at substitution of NO3 with Cl. During the first three days after NO3 removal, root growth acceleration was related to the increase in their longitudinal extensibility. It was shown that root exposure to buffer with pH 4.5 and also activation of H+ pump with naphthyl acetate imitated changes in extensibility induced by NO3 deficit. Earlier, we have demonstrated medium acidification near root surface and calculated its expected level (pH 4.5). This permits a supposition that the cause for changes in extensibility and root growth acceleration at NO3 deficit was apoplast acidification, evidently related to the ceasing of NO3 symport with H+ and activation of the plasmalemmal H+ pump. ABA did not affect root extensibility at pH 4.5; however, at pH 6.0, it was similar to the action of diethylstilbestrol, an inhibitor of H+ pump, and opposite to the action of NO3 deficit. Thus, the absence of ABA effects on root growth, in spite of its accumulation at NO3 deficit, could be explained by apoplast acidification as well.  相似文献   

7.
Apoplastic pH of intact leaves of Vicia faba as influenced by light   总被引:3,自引:0,他引:3  
The fluorochrome FITC-dextran was used to measure the effectof light on the apoplastic pH of intact Vicia faba leaves withthe ratio imaging technique. In darkadapted leaves the apoplasticpH varied depending on the leaf between 5.2 and 5.9. Red light(660 nm, 4–12 W m–2) leads to multiphasic responses:in the first seconds an alkalinization ({small tilde}0.3 pHunits), and thereafter an acidification of the leaf apoplast({small tilde}0.4 pH units) were observed. Both effects couldbe inhibited by DCMU. While variation of CO2 concentration revealedno effect on light-induced apoplastic pH changes, a decreasein O2 concentration decreased the effect. On the basis of ourdata it is suggested that the influence of photosynthesis onplasmalemma H+ ATPase is responsible for the observed effects,rather than altered CO2 uptake. Key words: Leaf apoplast, apoplastic pH, light, ratio imaging, pH-sensitive fluorescent dye, Vicia fab  相似文献   

8.
Mühling KH  Läuchli A 《Planta》2000,212(1):9-15
The K+-sensitive fluorescent dye benzofuran isophthalate (PBFI) and the pH-sensitive fluorescein isothiocyanate dextran (FITC-Dextran) were used to investigate the influence of light/dark transitions on apoplastic pH and K+ concentration in intact leaves of Vicia faba L. with fluorescence ratio imaging microscopy. Illumination by red light led to an acidification in the leaf apoplast due to light-induced H+ extrusion. Similar apoplastic pH responses were found on adaxial and abaxial sides of leaves after light/dark transition. Stomatal opening resulted only in a slight pH decrease (0.2 units) in the leaf apoplast. Gradients of apoplastic pH exist in the leaf apoplast, being about 0.5–1.0 units lower in the center of the xylem veins as compared with surrounding cells. The apoplastic K+ concentration in intact leaves declined during the light period. A steeper light-induced decrease in apoplastic K+, possibly caused by higher apoplastic K+, was found on the abaxial side of leaves concentration. Simultaneous measurements of apoplastic pH and K+ demonstrated that a light-induced decline in apoplastic K+ concentration indicative of net K+ uptake into leaf cells occurs independent of apoplastic pH changes. It is suggested that the driving force that is generated by H+ extrusion into the leaf apoplast due to H+-ATPase activity is sufficient for passive K+ influx into the leaf cells. Received: 7 March 2000 / Accepted: 12 May 2000  相似文献   

9.
Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pH i ) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pH i regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pH i was determined using the pH-sensitive fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pH i by a mechanism that was shown to be sensitive to external Na+. pH i recovery was also greatly reduced in the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO3/Cl exchanger and/or an Na+/HCO3 cotransporter and the action of the Na+/H+ exchanger on pH i regulation in the experimental conditions used. pH i recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pH i regulation in bovine Sertoli cells.  相似文献   

10.
Aloni B  Daie J  Wyse RE 《Plant physiology》1988,88(2):367-369
Leaf discs of broad bean (Vicia faba L.), peeled on the spongy mesophyll side, rapidly altered the pH of the surrounding medium (apoplast). Using pH indicator paper appressed against the leaf, immediately after peeling, initial apoplastic pH was estimated to be 4.5. Changes in the apoplastic pH were measured with a microelectrode placed into a 100-microliter drop of an unbuffered solution (2 millimolar KCl, 0.5 millimolar CaCl2, and 200 millimolar mannitol) on the peeled surface. Discs acidified the medium until the pH stabilized at about 5.0 (about 10 minutes). Acidification was inhibited by 50 micromolar sodium vanadate, an inhibitor of the plasmalemma H+-ATPase and attenuated by omitting the osmoticum or potassium ions from the medium. Fusicoccin (10 micromolar) greatly enhanced the rate of acidification. The presence of 0.1 to 1 micromolar gibberellic acid resulted in a slower rate of medium acidification. Gibberellic acid appeared to modulate the activity of the H+-translocating ATPase located at the plasma membrane of the mesophyll cells.  相似文献   

11.
An CI  Fukusaki E  Kobayashi A 《Planta》2001,212(4):547-555
Nepenthes is a unique genus of carnivorous plants that can capture insects in trapping organs called pitchers and digest them in pitcher fluid. The pitcher fluid includes digestive enzymes and is strongly acidic. We found that the fluid pH decreased when prey accumulates in the pitcher fluid of Nepenthes alata. The pH decrease may be important for prey digestion and the absorption of prey-derived nutrients. To identify the proton pump involved in the acidification of pitcher fluid, plant proton-pump homologs were cloned and their expressions were examined. In the lower part of pitchers with natural prey, expression of one putative plasma-membrane (PM) H+-ATPase gene, NaPHA3, was considerably higher than that of the putative vacuolar H+-ATPase (subunit A) gene, NaVHA1, or the putative vacuolar H+-pyrophosphatase gene, NaVHP1. Expression of one PM H+-ATPase gene, NaPHA1, was detected in the head cells of digestive glands in the lower part of pitchers, where proton extrusion may occur. Involvement of the PM H+-ATPase in the acidification of pitcher fluid was also supported by experiments with proton-pump modulators; vanadate inhibited proton extrusion from the inner surface of pitchers, whereas bafilomycin A1 did not, and fusicoccin induced proton extrusion. These results strongly suggest that the PM H+-ATPase is responsible for acidification of the pitcher fluid of Nepenthes. Received: 8 June 2000 / Accepted: 8 August 2000  相似文献   

12.
13.
During a 30-day period of increasing salinity, we examined the effects of NaCl on leaf H+-ATPase and salinity tolerance in 1-year-old plants of Populus euphratica Oliv. (salt resistant) and P. popularis 35–44 (P. popularis) (salt sensitive). Electron probe X-ray microanalysis of leaf mesophyll revealed that P. euphratica had a higher ability to retain lower NaCl concentrations in the cytoplasm, as compared to P. popularis. The sustained activity of H+ pumps (by cytochemical staining) in salinised P. euphratica suggests a role in energising salt transport through the plasma membrane (PM) and tonoplast. Salt-induced alterations of leaf respiration, ATP content and expression of PM H+-ATPase were compared between the two species. Results show that P. euphratica retained a constant respiratory rate, ATP production and protein abundance of PM H+-ATPase (by Western blotting) in salt-stressed plants. P. euphratica was able to maintain a comparatively high capacity of ATP hydrolysis and H+ pumping during prolonged salt exposure. By contrast, the activity and expression of PM H+-ATPase were markedly decreased in P. popularis leaves in response to salt stress. Furthermore, NaCl-stressed P. popularis plants showed a marked decline of respiration (70%) and ATP production (66%) on day 30. We conclude that the inability of P. popularis to transport salt to the apoplast and vacuole was partly due to the decreased activity of H+ pumps. As a consequence, cytosolic ion concentrations were observed to be comparatively high for an extended period of time, so that cell metabolism, in particular respiration, was disrupted in P. popularis leaves.  相似文献   

14.
Aerated and stirred 10-ml suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used for simultaneous measurements of net H+ efflux and steady-state ATP levels.

Initial rates of medium acidification indicated values for H+ efflux in the light and dark of 0.66 and 0.77 nanomoles H+/106 cells per minute, respectively. When the medium pH was maintained at 6.5, with a pH-stat apparatus, rates of H+ efflux remained constant. Darkness or DCMU, however, stimulated H+ efflux by 100% or more. Darkness increased ATP levels by 33% and a switch from dark to light reduced ATP levels by 31%. In the absence of aeration, illumination prevented the accumulation of respiratory CO2 and the buffering capacity of the medium was about 50% less than that found in the nonilluminated nonaerated medium. As a result, rates of pH decline were similar even though the dark rate of H+ efflux was approximately 50% greater.

Proposals that photosynthesis stimulates H+ efflux are based on changes in the rate of pH decline. The present data indicate that photosynthesis inhibits H+ efflux and that changes in rates of pH decline should not be equated with changes in the rate of H+ efflux.

  相似文献   

15.
Savchenko G  Wiese C  Neimanis S  Hedrich R  Heber U 《Planta》2000,211(2):246-255
 The regulation of pH in the apoplast, cytosol and chloroplasts of intact leaves was studied by means of fluorescent pH indicators and as a response of photosynthesis to acid stress. The apoplastic pH increased under anaerobiosis. Aeration reversed this effect. Apoplastic responses to CO2, HCl or NH3 differed considerably. Whereas HCl and ammonia caused rapid acidification or alkalinization, the return to initial pH values was slow after cessation of fumigation. Addition of CO2 either did not produce the acidification expected on the basis of known apoplastic buffering or even caused some alkalinization. Removal of CO2 shifted the apoplastic pH into the alkaline range before the pH returned to initial steady-state levels. In the presence of vanadate, the alkaline shift was absent and the apoplastic pH returned slowly to the initial level when CO2 was removed from the atmosphere. In contrast to the response of the apoplast, anaerobiosis acidified the cytosol or, in some species, had little effect on its pH. Acidification was rapidly reversed upon re-admission of oxygen. The CO2-dependent pH changes were very fast in the cytosol. Considerable alkalinization was observed after removal of CO2 under aerobic, but not under anaerobic conditions. Rates of the re-entry of protons into the cytosol during recovery from CO2 stress increased in the presence of oxygen with the length of previous exposure to high CO2. Effective pH regulation in the chloroplasts was indicated by the recovery of photosynthesis after the transient inhibition of photosynthetic electron flow when CO2 was increased from 0.038% to 16% in air. As photosynthesis became inhibited under high CO2, reduction of the electron transport chain increased transiently. The time required for recovery of photosynthesis from inhibition during persistent CO2 stress was similar to the time required for establishing steady-state pH values in the cytosol under acid stress. The high capacity of leaf cells for the rapid re-attainment of pH homeostasis in the apoplast and the cytoplasm under acid or alkaline stress suggested the rapid activation or deactivation of membrane-localised proton-transporting enzymes and corresponding ion channel regulation for co-transport of anions or counter-transport of cations together with proton fluxes. Acidification of the cytoplasm appeared to activate energy-dependent proton export primarily into the vacuoles whereas apoplastic alkalinization resulted in the pumping of protons into the apoplast. Proton export rates from the cytosol into the apoplast after anaerobiosis were about 100 nmol (m2 leaf area)−1 s−1 or less. Proton export under acid stress into the vacuole was about 1200 nmol m−2 s−1. The kinetics of pH responses to the addition or withdrawal of CO2 indicated the presence of carbonic anhydrase in the cytosol, but not in the apoplast. Received: 19 July 1999 / Accepted: 29 December 1999  相似文献   

16.
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase.  相似文献   

17.
The plasma membrane (PM) H+ ATPase is involved in the plant response to nutrient deficiency. However, adaptation of this enzyme in monocotyledon plants to phosphorus (P) deficiency lacks direct evidence. In this study, we detected that P deficient roots of rice (Oryza Sativa L.) could acidify the rhizosphere. We further isolated the PM from rice roots and analyzed the activity of PM H+ ATPase. In vitro, P deficient rice roots showed about 30% higher activity of PM H+ ATPase than the P sufficient roots at assay of pH 6.0. The P deficiency resulted in a decrease of the substrate affinity value (K m ) of PM H+ ATPase. The proton pumping activity of membrane vesicles from the P deficient roots was about 70% higher than that from P sufficient roots. Western blotting analysis indicated that higher activity of PM H+ ATPase in P deficient roots was related to a slightly increase of PM H+ ATPase protein abundance in comparison with that in P sufficient roots. Taken together, our results demonstrate that the P deficiency enhanced activities of both PM H+-ATPase and H+ pump, which contributed to the rhizosphere acidification in rice roots.  相似文献   

18.
The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl channel blocker, supporting coupling of H+-ATPase with Cl transport. Received: 6 July 1996/Revised: 27 December 1996  相似文献   

19.
C. I. Ullrich  J. Guern 《Planta》1990,180(3):390-399
During the reduction of extracellular [Fe(CN)6]3– at the plasmalemma of intact, K+-starvedLemna gibba L. fronds, the external medium was acidified and K+ released, in the absence of inhibitors with rates of 10 e/8.5 H+/1.5 K+ (mol·(g FW)–1·–1). In K+ plants the larger K+ efflux caused a lag phase in extracellular acidification and a change in rates to 10 e/6 H+/4 K+ and in the presence of CN+salicylhydroxamic acid at pH 5 to 5.2 e/0 H+/6.6 K+. The e transfer was accompanied by a membrane depolarization of up to 100 mV and a cytosolic acidification of about 0.6 pH units, but only in K+ plants, where the extracellular acidification was smaller. These results indicate that a stimulation of the plasmalemma H+-ATPase may be triggered either by a cytosolic acidification or by a strong membrane depolarization. It is concluded that the redox system catalyses only uncoupled e transfer without H+ transfer across the plasmalemma. The obligatory, but secondary charge compensation is partially achieved by the rapid K+ release upon membrane depolarization and partially by the activity of the plasma membrane H+-ATPase, but not by an e/anion exchange. The extracellular acidification during [Fe(CN)6]3– reduction is generated by the conversion of a strong trivalent into a strong tetravalent anion. This acidification is caused by changes in the concentration ratio of strong cations to strong anions. Efflux of K+ and not the production of organic acids or NAD(P)H oxidation is the chemical cause of the measurable cytosolic acidification. Extracellular acidification was inversely correlated with intracellular acidification. Similarly, fusicoccin-induced pH changes were correlated with changes in the strong-ion concentration difference. Extracellular ± FC-dependent acidification and intracellular alkalinization of up to 0.6 pH units were strongly dependent on K+ fluxes. The ferricyanide-triggered trans-plasmalemma electron-transfer system is an example of how measurable pH changes are the consequence and not the cause of charge-transfer-induced changes in strong-ion fluxes.Abbreviations DCCD dicyclohexylcarbodiimide - Em electrical membrane potential difference - FC fusicoccin - pHc cytosolic pH - FW fresh weight - PM plasmalemma - SHAM salicylhydroxamic acid - SID strong-ion concentration difference This work was supported by the Deutsche Forschungsgemeinschaft. We gratefully acknowledge the Alexander von Humboldt award donated to J.G. We thank Professor Ulrich Lüttge (TH Darmstadt, FRG) for his kind support and Annett Ehrhardt and Dr. Karl Fischer (TH Darmstadt, FRG) for their valuable help with Cl and CO2 experiments. Special thanks are due to Professor Erasmo Marrè (Università di Milano, Italy) for continuous discussions and also to Professor Alessandro Ballio (Università di Roma, Italy) for their kind gifts of fusicoccin.  相似文献   

20.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号