首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the effect of lysophosphatidylcholine (lysoPC) on the activity of the plasma membrane (PM) H+-AT-Pase measured at pH 6.3 or 7.5 in inside-out PM vesicles isolated from germinating radish seeds. LysoPC stimulated PM H+-ATPase at both pHs, but the dependence of the effect on lysoPC concentration was different: at pH 6.3 maximal stimulation was observed with 40 to 200 μg ml?1 lysoPC, while at pH 7.5 a sharp peak of activation was observed at about 50 μg ml?1 lysoPC, higher concentrations becoming dramatically inhibitory; this inhibitory effect was considerably reduced in the presence of 10% (v/v) glycerol. In trypsin-treared PM lysoPC stimulated the H+-ATPase activity assayed at pH 6.3, but only marginally that assayed at pH 7.5. LysoPC increased both Vmax (from 190 to 280nmol min?1 mg?1 prot) and apparent KM (from 0.15 to 0.3 mM) of the H+-ATPase at pH 6.3, while it increased Vmax (from 120 to 230 nmol min?1 mg?1 prot) and decreased apparent Km (from 0.8 to 0.4 mM) at pH 7.5. Low concentrations of Nacetylimidazole (10 to 50 mM), which modifies tyrosine residues, abolished the stimulation by lysoPC of the PM H+-ATPase activity at pH 7.5, but not that observed at pH 6.3. These results indicate that lysoPC influences the PM H+-ATPase through different mechanisms, and that its effect can only partly be ascribed to its ability to hamper the inhibitory interaction of the regulatory C-terminal domain with the catalytic site. N-acety-limidazole did not affect the stimulation of PM H+-ATPase by controlled trypsin treatment or by fusicoccin, indicating that the requirement for the tyrosine residue(s) modified by low Nacetylimidazole concentrations is specific for lysoPC-induced displacement of the C-terminal domain.  相似文献   

2.
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H+-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H+-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H+-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H+-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H+-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H+-ATPase antiserum and with an anti-14–3-3 antiserum indicated an FC-induced association of FCBP with the PM H+-ATPase. Analysis of the activation state of PM H+-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme.  相似文献   

3.
The aqueous two-phase partitioning technique was utilized to isolate a plasma membrane (PM) fraction from etiolated seedlings of Arabidopsis thaliana. The purification procedure adopted yielded a fraction highly enriched in PM as compared to inner membranes, with a recovery of about 30%, as judged from the activities of PM markers such as vanadate-sensitive ATPase, FC binding and UDP-glucose sterol glucosyltransferase. The purified PM fraction displayed vanadate-sensitive H+ pumping activity. Its purity was confirmed by the biochemical characteristics of its ATPase activity assayed in the absence of Ca2+: sensitivity to vanadate (IC50 ca. 1 μM), Mg2+-dependence, insensitivity to molybdate, oligomycin and nitrate, pH optimum at 6.6. The PM H+-ATPase activity was stimulated by fusicoccin and by a controlled treatment of the PM with trypsin. In both cases stimulation was much stronger on the activity assayed at pH 7.5 than on the activity at pH 6.6. Moreover, neither fusicoccin nor the treatment with trypsin stimulated the portion of activity (30 to 40% at pH 7.5) which decayed upon preincubation of the PM in assay medium without ATP.  相似文献   

4.
The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H+-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H+-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H+-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H+-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H+-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H+-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.  相似文献   

5.
The stimulation of the plasma membrane (PM) H+-ATPase by boric acid was studied on a microsomal fraction (MF) obtained from ungerminated, boron-dependent pollen grains of Lilium longiflorum Thunb. which usually need boron for germination and tube growth. ATP hydrolysis and H+ transport activity increased by 14 and 18%, respectively, after addition of 2-4 mM boric acid. The optimum of boron stimulation was at pH 6.5-8.5 for ATP hydrolysis and at pH 6.5-7.5 for H+ transport. No boron stimulation was detected when vanadate was added to the MF, whereas an increase of 10-20% in ATP hydrolysis and H+ transport was still measured in the presence of inhibitors specific for V -type ATPase (nitrate and bafilomycin) and F-type ATPase (azide), respectively. A vanadate-sensitive increase in ATP hydrolysis activity was also observed in partially permeabilized vesicles (0.001%[w/v] Triton X-100) suggesting a direct interaction between borate and the PM H+-ATPase rather than a weak acid-induced stimulation. Additionally, we measured the effect of boron on membrane voltage (Vm) of ungerminated pollen grains and observed small hyperpolarizations in 48% of all experiments. Exposing pollen grains to a more acidic pH of 4 caused a depolarization, followed in some experiments by a repolarization (21%). In the presence of 2 mM boron such hyperpolarizations, perhaps caused by an enhanced activity of the H+-ATPase, were measured in 58% of all tested pollen grains. The effects of boron on Vm may be reduced by additional stimulation of a K+ inward current of opposite direction to the H+-ATPase. All experiments indicate that boron stimulates an electrogenic transport system in the plasma membrane which is sensitive to vanadate and has a pH optimum around 7, i.e. the plasma membrane H+-ATPase. A boron-increased PM H+-ATPase activity in turn may stimulate germination and growth of pollen tubes.  相似文献   

6.
In vivo treatment of maize (Zea mays L.) coleoptile segments with auxin (indole-3-acetic acid; IAA) and fusicoccin (FC) followed by plasma-membrane isolation was used to characterize the effects of these treatments on the plasma-membrane H+-ATPase. Both IAA and FC increased H+ extrusion and elongation rate of the coleoptile segments, FC more strongly than IAA. Plasma membranes isolated after in-vivo treatment with FC showed a twofold stimulation of ATP hydrolysis and a several-fold stimulation of H+ pumping, whereas no effect was observed after IAA treatment, irrespective of whether the plasma membranes were prepared by two-phase partitioning or sucrose-gradient centrifugation. A more detailed investigation of the kinetic properties and pH dependence of the enzyme showed that FC treatment led to a twofold increase in V max, a decrease in K m for ATP from 1.5 mM to 0.24 mM, and a change in pH dependence resulting in increased activity at physiological pH levels. Again, IAA treatment showed no effects. Quantitation of the H+-ATPase by immunostaining using four different antibodies revealed no difference between IAA-and FC-treated material, and controls. From these data we conclude that (i) neither IAA nor FC gives rise to an increase in the amount of H+ -ATPase molecules in the plasma membrane that can be detected after membrane isolation, and (ii) if the H+-ATPase is activated by IAA, this activation is, in contrast to FC activation, not detectable after membrane isolation.Abbreviations BTP 1,3-bis(tris[hydroxymethyl]methylamino)-propane - FC fusicoccin - lyso-PC lysophosphatidylcholine - Mes 2-(N-morpholino)ethanesulfonic acid This paper is dedicated to Prof. Dieter Klämbt on the occasion of his 65th birthdayWe thank Ann-Christine Holmström and Adine Karlsson for excellent technical assistance, Professor Ramón Serrano (Instituto de Biologia Molecular y Celular de Plantas, UPV-CSIC, Universidad Politecnica, Valencia, Spain) for a generous gift of antisera to the H+-ATPase and Professor Wolfgang Michalke (Institut für Biologie III, Albert-Ludwigs-Universität, Freiburg, Germany) for kindly providing the monoclonal antibody to the H+-ATPase. This work was supported by the Swedish Natural Science Research Council, the Deutsche Agentur für Raumfahrtangelegenheiten (DARA, Bonn) via AGRAVIS (Bonn) and by the Ministerium für Wissenschaft und Forschung (MWF, Düsseldorf). Thomas Jahn received scholarships from the Deutsche Graduiertenförderung des Landes Nordrhein-Westfalen and the Deutscher Akademischer Austauschdienst (DAAD, Bonn).  相似文献   

7.
We analyzed the effects of controlled treatments with trypsin of plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings on the activity of the PM H+-ATPase, and we compared them with those of fusicoccin (FC). Mild treatments of the PM with trypsin, which led to a decrease of the molecular mass of the peptide of about 10 kD, markedly increased the H+-ATPase activity. The effect strongly increased with the increase of pH of the assay medium from 6.1 to 7.5, so the pH optimum of the enzyme activity shifted from 6.8 in untreated PM to 7.1 in trypsin-treated PM. The proteolytic treatment activated only the portion of PM H+-ATPase activity that is stable to preincubation in assay medium in the absence of ATP and determined a strong increase of Vmax and a less marked decrease of the apparent Km for Mg-ATP. All of these effects were very similar to those determined by FC, which activated the PM H+-ATPase without promoting its proteolytic cleavage. FC did not further activate the H+-ATPase activity of trypsin-treated PM under conditions in which the FC receptor was protected from the attack of trypsin. Conversely, trypsin treatment had little effect on the PM H+-ATPase preactivated with FC. Moreover, the activity of the PM H+-ATPase preactivated with FC was not further activated by Iysolecithin. These results indicate that the modification of the PM H+-ATPase of higher plants triggered by the FC-receptor complex hinders the inhibitory interaction of the regulatory C-terminal domain with the active site.  相似文献   

8.
The influence of drought stress on the ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activity by plasma membrane H+-ATPase was investigated using purified plasma membrane vesicles from wheat leaves by two-phase partitioning. Drought stress increased the ATPase activity, and the optimal pH was shifted from 6.5 to about 7.0. Drought stress also stimulated the PNPP hydrolysis rate. The Km for PNPP hydrolysis was moved from 4.49 ± 0.33 mM to 3.64 ± 0.12 mM. In addition, the PNPP hydrolysis was more sensitive to vanadate under drought compared to the control. However, the inhibitory effect of hydroxylamine on the ATPase was not changed by the present drought stress. In addtion, drought stress also decreased the trypsin activation of PNPP hydrolysis by PM H+-ATPase. These results suggested that drought stress altered the catalytic mechanism of the plasma membrane H+-ATPase, and the stimulation of its activity by drought stress was mainly due to increase of the catalytic activity of its phosphatase domain. It is also suggested that drought stress might alter the structure or property of the C-terminal end of PM H+-ATPase, therefore increasing the catalytic activity of the phosphatase domain.  相似文献   

9.
10.

Plasma membrane H+-ATPase (PM H+-ATPase, EC 3.6.1.3.) is a proton pump that is necessary to promote cell growth and ion fluxes across the plasma membrane. The main goal of this study was to evaluate the role of PM H+-ATPase isoform OsA7 expression in rice growth and nitrogen (N) accumulation using three genetically engineered lineages with artificial micro RNA (amiRNA) targeting OsA7 (osa7.1, osa7.2, and osa7.3). PM H+-ATPase isoform expression in rice shoots and roots (wild-type) revealed that OsA7 is highly expressed in roots and is the most highly expressed PM H+-ATPase isoform. The three osa7 lineages had lower fresh weight, grain yield, height, and 1000-grain weight compared to control IRS plants. The hydroponic experiment comprised three NO3 levels over 30 days: 0.2 mM NO3–N, 2.0 mM NO3–N, and NO3 starvation for 3 days. The three osa7 lineages had lower PM H+-ATPase and V-H+-PPase activity as compared to the IRS plants. The root and shoot fresh weights were lower in osa7 lineages. The root/shoot ratio was lower in the osa7 lineages cultivated without nitrogen for 3 days and with 0.2 mM of NO3–N as compared to IRS, and did not change in plants cultivated with 2.0 mM NO3–N. The total N concentration did not change in the three osa7 lineages as compared to IRS. Overall, the results indicate that OsA7 is important for rice growth, grain production, and root growth, but does not affect N accumulation, highlighting the importance of other PM H+-ATPase isoforms in N uptake.

  相似文献   

11.
To investigate the mechanism by which fusicoccin (FC) induces the activation of the plasma membrane (PM) H(+)-ATPase, we used phenylarsine oxide (PAO), a known inhibitor of protein tyrosine-phosphatases. PAO was supplied in vivo in the absence or presence of FC to radish (Raphanus sativus L.) seedlings and cultured Arabidopsis cells prior to PM extraction. Treatment with PAO alone caused a slight decrease of PM H(+)-ATPase activity and, in radish, a decrease of PM-associated 14-3-3 proteins. When supplied prior to FC, PAO drastically inhibited FC-induced activation of PM H(+)-ATPase, FC binding to the PM, and the FC-induced increase of the amount of 14-3-3 associated with the PM. On the contrary, PAO was completely ineffective on all of the above-mentioned parameters when supplied after FC. The H(+)-ATPase isolated from PAO-treated Arabidopsis cells maintained the ability to respond to FC if supplied with exogenous, nonphosphorylated 14-3-3 proteins. Altogether, these results are consistent with a model in which the dephosphorylated state of tyrosine residues of a protein(s), such as 14-3-3 protein, is required to permit FC-induced association between the 14-3-3 protein and the PM H(+)-ATPase.  相似文献   

12.
Leishmania donovani has an active K+/H+ exchange system on the surface membrane. Modulation of external K+ concentration resulted in a corresponding change in internal pH (pHi) suggesting a link between proton and potassium transport. Although a Na+/H+ antiporter is present on the plasma membrane, its sensitivity to amiloride suggests that it operates independent of K+/H+ exchange. Reduction of cellular ATP with NaN3 and KCN inhibits K+/H+ exchange showing thereby that the process is energy dependent. The K+/H+ exchange is sensitive to inhibitors of the gastric K+/H+-ATPase. It is concluded that the H+-ATPase previously reported on the plasma membrane of L. donovani is in fact a K+/H+-ATPase. © 1994 wiley-Liss, Inc.  相似文献   

13.
Plasma Membrane H+-ATPase in Guard-Cell Protoplasts from Vicia faba L.   总被引:2,自引:0,他引:2  
The activity of plasma membrane H+-ATPase was measured withmembrane fragments of guard-cell protoplasts isolated from Viciafaba L. ATP hydrolytic activity was slightly inhibited by oligomycinand ammonium molybdate, and markedly inhibited by NO3and vanadate. In the presence of oligomycin, ammonium molybdateand NO3, the ATP-hydrolyzing activity was strongly inhibitedby vanadate. It was also inhibited by diethylstilbestrol (DES),p-chloromercuribenzoic acid (PCMB) and Ca2+, but slightly stimulatedby carbonyl cyanide m-chlorophenylhydrazone (CCCP). The acitivityhad higher specificity for ATP as a substrate than other phosphoricesters such as ADP, AMP, GTP and p-nitrophenylphosphate; theKm was 0.5 mM for ATP. The activity required Mg2+ but was notaffected by K+, and it was maximal around pH 6.8. When guard-cellprotoplasts were used instead of membrane fragments, the ATPaseactivity reached up to 800µmol Pi.(mg Chl)–1.h–1in the presence of lysolecithin. These results indicate thatthe guard cell has a high plasma membrane H+-ATPase activity. (Received December 23, 1986; Accepted April 28, 1987)  相似文献   

14.
运用γ-32P示踪、蛋白激酶和磷酸酶抑制剂药理实验探讨茉莉酸甲酯(MeJA)对质膜H -ATP酶水解活力及磷酸化水平的影响.结果如下:MeJA可促进H -ATP酶水解活力30%;斑蝥素和岗田酸促进了MeJA对质膜H -ATP酶的刺激作用;星形孢菌素和白屈菜红碱削弱了MeJA对质膜H -ATP酶的刺激作用.H -ATP酶活力变化同时,其上的γ-32P标记量发生变化.Ca2 对H -ATP酶水解活力有很大的刺激作用,但对MeJA促进H -ATP酶活力的作用没有进一步的影响.根据这些结果可以得出结论:MeJA刺激质膜H -ATP酶水解活力的变化与H -ATP酶磷酸化水平呈正相关,并且催化这一作用的蛋白激酶可能不依赖于Ca2 ,而蛋白磷酸酶依赖于Ca2 .  相似文献   

15.
The phytotoxin fusicoccin (FC) was found to induce an increase in apoplastic H2O2 content in Arabidopsis thaliana cells, apparently linked to the presence of an as yet unidentified catalase inhibitor detectable even in the external medium of FC‐treated cells. This study, aimed to further characterize the inhibitor's features, shows that (1) FC‐induced H2O2 accumulation increases as a function of FC concentration and correlates to the amount of inhibitor released at apoplastic level. The pattern of H+ efflux, conversely, does not fit with that of these two parameters, suggesting that neither the production nor the release of the catalase inhibitor is linked to the main role of FC in activating the plasma membrane (PM) H+‐ATPase; (2) treatment with 10 µM erythrosin B (EB) early and totally inhibits net H+ and K+ fluxes across the PM, indicative of the H+ pump activity; nevertheless, also in these conditions a huge FC‐induced H2O2 accumulation occurs, confirming that this effect is not related to the FC‐induced PM H+‐ATPase activation; (3) the inhibitor's release increases with time in all conditions tested and is markedly affected by extracellular pH (a higher pH value being associated to a larger efflux), in agreement with a weak acid release; and (4) the inhibitor can be almost completely recovered in a CH2Cl2‐soluble fraction extracted from the incubation medium by sequential acid–base partitioning which contains nearly all of the organic acids released. These final results strongly suggest that the metabolite responsible for the FC‐induced catalase inhibition belongs to the organic acid class.  相似文献   

16.
The plant plasma-membrane H+-ATPase (EC 3.6.1.35) contains a C-terminal autoinhibitory domain whose displacement from the catalytic site is caused by treatment of intact plant tissue with the phytotoxin fusicoccin (FC). The FC-induced activation of the H+-ATPase was proposed to involve a direct interaction of 14-3-3 proteins with the H+-ATPase. By analysing plasma membranes derived from leaves of Commelina communis L., direct biochemical evidence has now been obtained for a complex between the C-terminus of the H+-ATPase and a 14-3-3 dimer. Stabilization of this complex was achieved by FC treatment in vivo or in vitro. Furthermore, the C-terminal domain of the H+-ATPase in association with a 14-3-3 dimer is essential for the creation of a functional FC-binding complex. Received: 1 August 1998 / Accepted: 15 September 1998  相似文献   

17.
In situ plasma membrane H+-ATPase activity was monitored during pH-regulated dimorphism of Candida albicans using permeabilized cells. ATPase activity was found to increase in both the bud and germ tube forming populations at 135 min which coincides with the time of evagination. Upon reaching the terminal phenotype the mycelial form exhibited higher H+-ATPase activity as compared to the yeast form. At the time of evagination H+-efflux exhibited an increase. K+ depletion resulted in attenuated ATPase activity and glucose induced H+-efflux. The results demonstrate that ATPase may play a regulatory role in dimorphism of C. albicans and K+ acts as a modulator.Abbreviations PM Plasma membrane - pHi intracellular pH - Pi inorganic phosphorus - TET Toluene: Ethanol: Triton X-100  相似文献   

18.
Spartina patens, an intertidal C4 grass, grows in the upper salt marsh and tolerates coastal seawater salinity. The regulation of ion movement across the plasma membrane (PM) for plant salt tolerance is thought to be achieved by an electrochemical gradient generated by plasma membrane H+-ATPase. In this study, the change of PM H+-ATPase in response to NaCl was characterized for S. patens callus. Callus was cultured for 10 weeks under salinity levels of 0 mM, 170 mM, 340 mM, and 510 mM NaCl. Plasma membrane was isolated from a Dextran/PEG aqueous polymer two-phase system and the purity was demonstrated with membrane enzyme markers. There was a significant increase (up to 2-3 fold) of PM H+-ATPase activity when callus was grown on media containing NaCl. The incremental activation of PM H+-ATPase activity would enable the cell to tolerate higher cytoplasmic NaCl concentrations. PM H+-ATPase appeared to have a higher Vmax and a lower substrate concentration (Km to reach Vmax. When growth medium salinity increased from 0 mM to 170 and 340 mM, the Vmax of H+-ATPase increased from 0.64 to 1.00 and 1.73, respectively, while the Km decreased from 3.58 to 2.07 and 2.44 mM, respectively. In vitro NaCl inhibition kinetic data revealed a pattern of non-competitive inhibition by NaCl on PM H+-ATPase. The response of PM H+-ATPase in S. patens callus suggests that this species has evolved mechanisms that can regulate this important enzyme when cells are exposed to NaCl.  相似文献   

19.
Cold stress is one of the major environmental factors limiting the amount of plant mass for bioenergy production. A chilling-sensitive Jatropha (Jatropha curcas L.) as a bioenergy crop was used to investigate the cold injury process at the physiological and biochemical levels. Various physiological parameters such as leaf length, width, stomatal conductance, chlorophyll fluorescence, and electrolyte leakage were measured to determine the growth rate of leaves cold-treated (7 and 2 °C) for 5 days. These parameters of cold-treated Jatropha were significantly reduced from day 1 compared with control (23 °C). Using the pH indicator bromocresol purple, it was shown that surface pH of Jatropha root in control was strongly acidified by time only from the starting pH 6, while H+-efflux of the surface of cold-treated roots did not change. H+-ATPase activity of plasma membrane (PM) isolated from leaves and roots of cold-treated Jatropha was decreased in a time-dependent manner. The expression of PM H+-ATPase and 14-3-3 protein, which participates in phosphorylation of PM H+-ATPase was reduced in the presence of cold stress. Interestingly, fusicoccin, an activator of the PM H+-ATPase, alleviated cold-injury by stimulating the enzyme in leaves. These results may suggest that the activity and expression of PM H+-ATPase in Jatropha is closely related to the overcoming of cold stress.  相似文献   

20.
Suaeda salsa calli treated with different concentrations of NaCl were used to examine the response of the plasma membrane (PM) H+-ATPase to NaCl and its role in salt tolerance. The optimum concentration of NaCl for growth of the calli was 50 mM, while growth was significantly inhibited at 250 mM NaCl. The ion and organic solute contents of calli increased with increasing NaCl. Activity of the PM H+-ATPase increased when the calli were treated with NaCl over a certain concentration range (0–150 mM NaCl). However, the activity reached its maximum with 150 mM NaCl. Immunoblotting analysis of the PM H+-ATPase protein from calli cultures with anti-Zea mays H+-ATPase serum (monoclonal 46E5B11D5) identified a single polypeptide of ~90 kDa. The peptide levels increased in the calli treated with NaCl at 150 mM NaCl compared to control, but the increase at 50 mM NaCl was less pronounced. Northern blot analysis showed that the expression of the PM H+-ATPase also increased after the calli were treated with NaCl. These results suggest that the increase in PM H+-ATPase activity is due to both an increase in the amount of PM H+-ATPase protein and an up-regulation of the PM H+-ATPase gene, which is involved in the salt tolerance of S. salsa calli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号