首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-chain 3-hydroxyacyl-CoA dehydrogenase was extracted from the washed membrane fraction of frozen rat liver mitochondria with buffer containing detergent and then was purified. This enzyme is an oligomer with a molecular mass of 460 kDa and consisted of 4 mol of large polypeptide (79 kDa) and 4 mol of small polypeptides (51 and 49 kDa). The purified enzyme preparation was concluded to be free from the following enzymes based on marked differences in behavior of the enzyme during purification, molecular masses of the native enzyme and subunits, and immunochemical properties: enoyl-CoA hydratase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases. The purified enzyme exhibited activities toward enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase together with the long-chain 3-hydroxyacyl-CoA dehydrogenase activity. The carbon chain length specificities of these three activities of this enzyme differed from those of the other enzymes. Therefore, it is concluded that this enzyme is not long-chain 3-hydroxyacyl-CoA dehydrogenase; rather, it is enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein.  相似文献   

2.
We have purified to homogeneity the long-chain specific 3-hydroxyacyl-CoA dehydrogenase from mitochondrial membranes of human infant liver. The enzyme is composed of non-identical subunits of 71 kDa and 47 kDa within a native structure of 230 kDa. The pure enzyme is active with 3-ketohexanoyl-CoA and gives maximum activity with 3-ketoacyl-CoA substrates of C10 to C16 acyl-chain length but is inactive with acetoacetyl-CoA. In addition to 3-hydroxyacyl-CoA dehydrogenase activity, the enzyme possesses 2-enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase activities which cannot be separated from the dehydrogenase. None of these enzymes show activity with C4 substrates but all are active with C6 and longer acyl-chain length substrates. They are thus distinct from any described previously. This human liver mitochondrial membrane-bound enzyme catalyses the conversion of medium- and long-chain 2-enoyl-CoA compounds to: 1) 3-ketoacyl-CoA in the presence of NAD alone and 2) to acetyl-CoA (plus the corresponding acyl-CoA derivatives) in the presence of NAD and CoASH. It is therefore a multifunctional enzyme, resembling the beta-oxidation enzyme of E. coli, but unique in its membrane location and substrate specificity. We propose that its existence explains the repeated failure to detect any intermediates of mitochondrial beta-oxidation.  相似文献   

3.
An Escherichia coli mutant (fadB64), with a defective L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) which is unable to grow on long-chain fatty acids as the sole carbon source, was shown to possess a fatty acid oxidation complex that contains five beta-oxidation enzymes, including L-3-hydroxyacyl-CoA dehydrogenase. A comparative study of the complexes from the mutant, from its parental strain and from wild-type E. coli B demonstrated the immunological and gross structural identity of all three fatty acid oxidation complexes. A kinetic evaluation of the complexes led to the suggestion that the mutation may have affected the active site of L-3-hydroxyacyl-CoA dehydrogenase so that it is inactive with acetoacetyl-CoA as a substrate, but exhibits an increasing percentage of the parental dehydrogenase activity with increasing chain length of the substrate.  相似文献   

4.
Peroxisomal delta 3, delta 2-enoyl-CoA isomerase (EC 5.3.3.8) was studied in the liver of rats treated with clofibrate. The mitochondrial and peroxisomal isoenzymes were separated chromatographically and the peroxisomal isomerase purified to apparent homogeneity. In addition to the isomerization of 3-enoyl-CoA esters, the purified protein also catalyzed hydration of trans-2-enoyl-CoA and oxidation of L-3-hydroxyacyl-CoA. Incubation of the purified protein with trans-3-decenoyl-CoA, NAD+, and Mg2+ resulted in an increase in absorbance at 303 nm, indicating the formation of 3-ketoacyl-CoA. The protein purified was monomeric, with an estimated molecular weight of 78,000. In immunoblotting it was recognized by the antibody to peroxisomal bifunctional protein from rat liver. Comparison of the amino acid sequences of cyanogen bromide cleaved isomerase with the known sequence of the peroxisomal bifunctional protein from the rat identified them as the same molecule. In control experiments, the peroxisomal bifunctional protein purified according to published methods also catalyzed delta 3, delta 2-enoyl-CoA isomerization. This means that the bifunctional protein of rat liver is in fact a trifunctional enzyme possessing delta 3, delta 2-enoyl-CoA isomerase, 2-enoyl-CoA hydratase (EC 4.2.1.17), and L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities in the same polypeptide.  相似文献   

5.
The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates.  相似文献   

6.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

7.
8.
3-Hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35] was purified 100-fold to homogeneity from crude extracts of Mycobacterium smegmatis, using ammonium sulfate fractionation, gel filtration, and chromatography on DEAE-cellulose, hydroxyapatite, and NAD-Sepharose 4B columns. Its molecular weight was estimated to be 50,300 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NADH acted twelve times more efficiently than NADPH as an electron donor for the reduction of 3-ketoacyl-CoA, and there was strict substrate stereospecificity (L form) in the oxidation of 3-hydroxyacyl-CoA. The pH optimum depended upon the direction of reaction, i.e., 6.0 for the oxidation of NADH and 9--10 for the reduction of NAD. The Km values for different thioesters of acetoacetate, i.e., esters of CoA, pantetheine, and acetyl-cysteamine were determined to be 0.036, 1.19, and 44.4 mM, respectively. Antibodies raised against the dehydrogenase of M. smegmatis strongly inhibited the enzyme activity, but did not affect the corresponding dehydrogenase of pig heart. The antibodies were found to inhibit the acetyl-CoA dependent elongation of fatty acids by the crude extract of M. smegmatis. These findings, together with those on the reconstitution of the elongation activity reported previously (Shimakata, T., Fujita, Y., & Kusaka, T. (1977) J. Biochem. 82, 725-732) indicate that 3-hydroxyacyl-CoA dehydrogenase is involved in the acetyl-CoA dependent elongation of fatty acids in M. smegmatis.  相似文献   

9.
Medium-chain length methyl ketones are potential blending fuels due to their cetane numbers and low melting temperatures. Biomanufacturing offers the potential to produce these molecules from renewable resources such as lignocellulosic biomass. In this work, we designed and tested metabolic pathways in Escherichia coli to specifically produce 2-heptanone, 2-nonanone and 2-undecanone. We achieved substantial production of each ketone by introducing chain-length specific acyl-ACP thioesterases, blocking the β-oxidation cycle at an advantageous reaction, and introducing active β-ketoacyl-CoA thioesterases. Using a bioprospecting approach, we identified fifteen homologs of E. coli β-ketoacyl-CoA thioesterase (FadM) and evaluated the in vivo activity of each against various chain length substrates. The FadM variant from Providencia sneebia produced the most 2-heptanone, 2-nonanone, and 2-undecanone, suggesting it has the highest activity on the corresponding β-ketoacyl-CoA substrates. We tested enzyme variants, including acyl-CoA oxidases, thiolases, and bi-functional 3-hydroxyacyl-CoA dehydratases to maximize conversion of fatty acids to β-keto acyl-CoAs for 2-heptanone, 2-nonanone, and 2-undecanone production. In order to address the issue of product loss during fermentation, we applied a 20% (v/v) dodecane layer in the bioreactor and built an external water cooling condenser connecting to the bioreactor heat-transferring condenser coupling to the condenser. Using these modifications, we were able to generate up to 4.4 g/L total medium-chain length methyl ketones.  相似文献   

10.
The synthesis of nitroxide spin-labeled derivatives of S-acetoacetyl-CoA, S-acetoacetylpantetheine, and S-acetoacetylcysteamine is described. These compounds are active substrates of L-3-hydroxyacyl-CoA dehydrogenase [(S)-3-hydroxyacyl-CoA:NAD+ oxidoreductase, EC 1.1.1.35] exhibiting vmax values from 20% to 70% of S-acetoacetyl-CoA itself. S-Acetoacetylpantetheine and S-acetoacetylcysteamine form binary complexes with the enzyme and exhibit ESR spectra typical for immobilized nitroxides. In the case of spin-labeled pantetheine, the radical is more mobile. When spin-labeled substrates are bound simultaneously to each active site of this dimeric enzyme, spin-spin interactions differentiate between two alternate orientations of the substrate [Birktoft, J.J., Holden, H.M., Hamlin, R., Xuong, N.H., & Banaszak, L.J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8262-8266]. The fatty acid moiety is thought to be located in a cleft between two domains whereas a large part of the CoA moiety probably extends into the solution. NAD+, spin-labeled at N6 of the adenine ring, is an active coenzyme of L-3-hydroxyacyl-CoA dehydrogenase (60% vmax). Complexes with the enzyme exhibit ESR spectra typical of highly immobilized nitroxides. Binding of coenzyme NAD+ causes conformational changes of the binary enzyme/substrate complex as revealed by changes in the ESR spectrum of spin-labeled S-acetoacetylpantetheine.  相似文献   

11.
Human brain short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) was found to catalyze the oxidation of 17beta-estradiol and dihydroandrosterone as well as alcohols. Mitochondria have been demonstrated to be the proper location of this NAD+-dependent dehydrogenase in cells, although its primary structure is identical to an amyloid beta-peptide binding protein reportedly associated with the endoplasmic reticulum (ERAB). This fatty acid beta-oxidation enzyme was identified as a novel 17beta-hydroxysteroid dehydrogenase responsible for the inactivation of sex steroid hormones. The catalytic rate constant of the purified enzyme was estimated to be 0.66 min-1 with apparent Km values of 43 and 50 microM for 17beta-estradiol and NAD+, respectively. The catalytic efficiency of this enzyme for the oxidation of 17beta-estradiol was comparable with that of peroxisomal 17beta-hydroxysteroid dehydrogenase type 4. As a result, the human SCHAD gene product, a single-domain multifunctional enzyme, appears to function in two different pathways of lipid metabolism. Because the catalytic functions of human brain short chain L-3-hydroxyacyl-CoA dehydrogenase could weaken the protective effects of estrogen and generate aldehydes in neurons, it is proposed that a high concentration of this enzyme in brain is a potential risk factor for Alzheimer's disease.  相似文献   

12.
Peroxisomal beta-oxidation proceeds from enoyl-CoA through D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA by the D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxy-acyl-CoA dehydrogenase bifunctional protein (d-bifunctional protein), and the oxidation of bile-acid precursors also has been suggested as being catalyzed by the d-bifunctional protein. Because of the important roles of this protein, we reinvestigated two Japanese patients previously diagnosed as having enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (L-bifunctional protein) deficiency, in complementation studies. We found that both the protein and the enzyme activity of the d-bifunctional protein were hardly detectable in these patients but that the active L-bifunctional protein was present. The mRNA level in patient 1 was very low, and, for patient 2, mRNA was of a smaller size. Sequencing analysis of the cDNA revealed a 52-bp deletion in patient 1 and a 237-bp deletion in patient 2. This seems to be the first report of D-bifunctional protein deficiency. Patients previously diagnosed as cases of L-bifunctional protein deficiency probably should be reexamined for a possible d-bifunctional protein deficiency.  相似文献   

13.
The gene encoding the multifunctional protein (MFP) of peroxisomal beta-oxidation in Saccharomyces cerevisiae was isolated from a genomic library via functional complementation of a fox2 mutant strain. The open reading frame consists of 2700 base pairs encoding a protein of 900 amino acids. The predicted molecular weight (98,759) is in close agreement with that of the isolated polypeptide (96,000). Analysis of the deduced amino acid sequence revealed similarity to the MFPs of two other fungi but not to that of rat peroxisomes or the multifunctional subunit of the Escherichia coli beta-oxidation complex. The FOX2 gene was overexpressed from a multicopy vector (YEp352) in S. cerevisiae and the gene product purified to apparent homogeneity. A truncated version of MFP lacking 271 carboxyl-terminal amino acids was also overexpressed and purified. Experiments to study the enzymatic properties of the wild-type MFP demonstrated an absence of activities originally assigned to an MFP of S. cerevisiae (crotonase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase), whereas two other activities were found: 2-enoyl-CoA hydratase 2 (converting trans-2-enoyl-CoA to D-3-hydroxyacyl-CoA) and D-3-hydroxyacyl CoA dehydrogenase (converting D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA). The truncated form contained only the D-3-hydroxyacyl-CoA dehydrogenase activity. These results clearly demonstrate that the beta-oxidation of fatty acids in S. cerevisiae follows a previously unknown stereochemical course, namely it occurs via a D-3-hydroxyacyl-CoA intermediate.  相似文献   

14.
Two isozymes (E1 and E2) of human aldehyde dehydrogenase (EC 1.2.1.3) were purified to homogeneity 13 years ago and a third isozyme (E3) with a low Km for gamma-aminobutyraldehyde only recently. Comparison with a variety of substrates demonstrates that substrate specificity of all three isozymes is broad and similar. With straight chain aliphatic aldehydes (C1-C6) the Km values of the E3 isozyme are identical with those of the E1 isozyme. All isozymes dehydrogenate naturally occurring aldehydes, 5-imidazoleacetaldehyde (histamine metabolite) and acrolein (product of beta-elimination of oxidized polyamines) with similar catalytic efficiency. Differences between the isozymes are in the Km values for aminoaldehydes. Although all isozymes can dehydrogenate gamma-aminobutyraldehyde, the Km value of the E3 isozyme is much lower: the same appears to apply to aldehyde metabolites of cadaverine, agmatine, spermidine, and spermine for which Km values range between 2-18 microM and kcat values between 0.8-1.9 mumol/min/mg. Thus, the E3 isozyme has properties which make it suitable for the metabolism of aminoaldehydes. The physiological role of E1 and E2 isozymes could be in dehydrogenation of aldehyde metabolites of monoamines such as 3,4-dihydroxyphenylacetaldehyde or 5-hydroxyindoleacetaldehyde; the catalytic efficiency with these substrates is better with E1 and E2 isozymes than with E3 isozyme. Isoelectric focusing of liver homogenates followed by development with various physiological substrates together with substrate specificity data suggest that aldehyde dehydrogenase (EC 1.2.1.3) is the only enzyme in the human liver capable of catalyzing dehydrogenation of aldehydes arising via monoamine, diamine, and plasma amine oxidases. Although the enzyme is generally considered to function in detoxication, our data suggest an additional function in metabolism of biogenic amines.  相似文献   

15.
Genetic complementation of a mutant defective in fatty acid oxidation (fadAB) with plasmids containing DNA inserts from the fadAB region of the Escherichia coli genome was studied. The mutant containing the hybrid plasmid with a 5.2-kilobase (kb) PstI-SalI fragment was found to overproduce 3-hydroxyacyl-coenzyme A (CoA) epimerase and delta 3-cis-delta 2-trans-enoyl-CoA isomerase as well as three other beta-oxidation enzymes by 16- to 18-fold compared with the wild-type parental strain LE392. The purification of a fully functional multienzyme complex of fatty acid oxidation from the transformant ultimately established that the 5.2-kb DNA fragment contained an entire fadAB operon. Since immunotitration of cell extracts with antibodies against the fatty acid oxidation complex proved that all 3-hydroxyacyl-CoA epimerase and delta 3-cis-delta 2-trans-enoyl-CoA isomerase activities were associated with the complex, no genetic loci other than the fadAB operon encoded these two enzymes. Moreover, the binding of antibodies caused parallel inhibition of four component enzymes, whereas 3-ketoacyl-CoA thiolase activity was slightly increased. These findings support the suggestion that the epimerase and isomerase as well as enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase are located on the same polypeptide. The results of this study, together with published data (S.-Y. Yang and H. Schulz, J. Biol. Chem. 258:9780-9785, 1983), lead to the conclusion that 3-hydroxyacyl-CoA epimerase, delta 3-cis-delta 2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase are encoded by the fadB gene.  相似文献   

16.
In recent years the short-chain fatty acid, 4-phenylbutyrate (PB), has emerged as a promising drug for various clinical conditions. In fact, PB has been Food and Drug Administration-approved for urea cycle disorders since 1996. PB is more potent and less toxic than its metabolite, phenylacetate (PA), and is not just a pro-drug for PA, as was initially assumed. The metabolic pathway of PB, however, has remained unclear. Therefore, we set out to identify the enzymes involved in the β-oxidation of PB. We used cells deficient in specific steps of fatty acid β-oxidation and ultra-HPLC to measure which enzymes were able to convert PB or its downstream products. We show that the first step in PB oxidation is catalyzed solely by the enzyme, medium-chain acyl-CoA dehydrogenase. The second (hydration) step can be catalyzed by all three mitochondrial enoyl-CoA hydratase enzymes, i.e., short-chain enoyl-CoA hydratase, long-chain enoyl-CoA hydratase, and 3-methylglutaconyl-CoA hydratase. Enzymes involved in the third step include both short- and long-chain 3-hydroxyacyl-CoA dehydrogenase. The oxidation of PB is completed by only one enzyme, i.e., long-chain 3-ketoacyl-CoA thiolase. Taken together, the enzymatic characteristics of the PB degradative pathway may lead to better dose finding and limiting the toxicity of this drug.  相似文献   

17.
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.  相似文献   

18.
Human heart short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) catalyzes the oxidation of the hydroxyl group of L-3-hydroxyacyl-CoA to a keto group, concomitant with the reduction of NAD+ to NADH, as part of the beta-oxidation pathway. The homodimeric enzyme has been overexpressed in Escherichia coli, purified to homogeneity, and studied using biochemical and crystallographic techniques. The dissociation constants of NAD+ and NADH have been determined over a broad pH range and indicate that SCHAD binds reduced cofactor preferentially. Examination of apparent catalytic constants reveals that SCHAD displays optimal enzymatic activity near neutral pH, with catalytic efficiency diminishing rapidly toward pH extremes. The crystal structure of SCHAD complexed with NAD+ has been solved using multiwavelength anomalous diffraction techniques and a selenomethionine-substituted analogue of the enzyme. The subunit structure is comprised of two domains. The first domain is similar to other alpha/beta dinucleotide folds but includes an unusual helix-turn-helix motif which extends from the central beta-sheet. The second, or C-terminal, domain is primarily alpha-helical and mediates subunit dimerization and, presumably, L-3-hydroxyacyl-CoA binding. Molecular modeling studies in which L-3-hydroxybutyryl-CoA was docked into the enzyme-NAD+ complex suggest that His 158 serves as a general base, abstracting a proton from the 3-OH group of the substrate. Furthermore, the ability of His 158 to perform such a function may be enhanced by an electrostatic interaction with Glu 170, consistent with previous biochemical observations. These studies provide further understanding of the molecular basis of several inherited metabolic disease states correlated with L-3-hydroxyacyl-CoA dehydrogenase deficiencies.  相似文献   

19.
The metabolism of 3-mercaptopropionic acid in mitochondria was studied by use of purified mitochondrial enzymes and rat heart mitochondria. Metabolites of 3-mercaptopropionic acid were separated by high performance liquid chromatography and identified by comparing them with chemically synthesized derivatives of 3-mercaptopropionic acid. The initial step in the metabolism of 3-mercaptopropionic acid is its conversion to a CoA thioester, most likely catalyzed by medium-chain acyl-CoA synthetase. The resulting 3-mercaptopropionyl-CoA is a poor substrate of acyl-CoA dehydrogenase but substitutes effectively for CoASH in reactions catalyzed by 3-ketoacyl-CoA thiolase and acetoacetyl-CoA thiolase. S-Acyl-3-mercaptopropionyl-CoA thioesters formed in the thiolase-catalyzed reactions are not at all or only poorly acted upon by acyl-CoA dehydrogenases. However, they are hydrolyzed by thioesterase(s) to CoASH and S-acyl-3-mercaptopropionic acid. The hydrolysis of S-acyl-3-mercaptopropionyl-CoA thioesters proceeds more rapidly than the hydrolysis of fatty acyl-CoA thioesters of comparable chain lengths. Free CoASH is also regenerated from S-acetyl-3-mercaptopropionyl-CoA and more rapidly from 3-mercaptopropionyl-CoA as a result of their reactions with carnitine catalyzed by carnitine acetyltransferase. These findings lead to the suggestion that the major mitochondrial CoA-containing metabolites of 3-mercaptopropionic acid are S-acyl-3-mercaptopropionyl-CoA thioesters.  相似文献   

20.
The trifunctional enzyme comprises three consecutive steps in the mitochondrial beta-oxidation of long-chain acyl-CoA esters: 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase. Deficiencies in either 3-hydroxyacyl-CoA dehydrogenase activity, or all three activities, are important causes of human disease. The dehydrogenase and thiolase have a requirement for NAD+ and CoA respectively, whose levels are conserved within the mitochondrion and thus provide possible means for control and regulation of beta-oxidation. Using analysis of the intact CoA ester intermediates produced by the complex, we have examined the sensitivity of the complex to NAD+/NADH and acetyl-CoA. We consider the evidence for channelling within the trifunctional protein and propose a model for a beta-oxidation 'metabolon'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号