首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9712篇
  免费   950篇
  国内免费   453篇
  2024年   35篇
  2023年   184篇
  2022年   219篇
  2021年   263篇
  2020年   321篇
  2019年   381篇
  2018年   400篇
  2017年   314篇
  2016年   326篇
  2015年   351篇
  2014年   494篇
  2013年   630篇
  2012年   296篇
  2011年   531篇
  2010年   542篇
  2009年   580篇
  2008年   685篇
  2007年   636篇
  2006年   545篇
  2005年   498篇
  2004年   397篇
  2003年   375篇
  2002年   294篇
  2001年   168篇
  2000年   139篇
  1999年   149篇
  1998年   148篇
  1997年   141篇
  1996年   97篇
  1995年   116篇
  1994年   102篇
  1993年   89篇
  1992年   80篇
  1991年   71篇
  1990年   51篇
  1989年   45篇
  1988年   41篇
  1987年   37篇
  1986年   29篇
  1985年   42篇
  1984年   74篇
  1983年   55篇
  1982年   54篇
  1981年   29篇
  1980年   29篇
  1979年   14篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The genus Fusarium contains many fungal species known to be pathogenic to animals and plants alike. One species complex within this genus, the Fusarium solani species complex (FSSC), is of particular concern due to its high numbers of pathogenic members. FSSC members are known to contribute significantly to plant, human and other animal fungal disease. One member of the FSSC, Fusarium keratoplasticum, is of particular ecological concern and has been implicated in low hatching success of endangered sea turtle eggs, as well as contribute to human and other animal Fusarium pathogenesis. Species-specific primers for molecular identification of F. keratoplasticum currently do not exist to our knowledge, making rapid identification, tracking and quantitation of this pathogenic fungus difficult. The objective of this study was to develop primers specific to F. keratoplasticum that could be applied to DNA from isolated cultures as well as total (mixed) DNA from environmental samples. RPB2 sequence from 109 Fusarium isolates was aligned and analysed to determine nucleotide polymorphisms specific to F. keratoplasticum useful for primer design. A set of primers were generated and found to be effective for identification of F. keratoplasticum from total DNA extracted from sand surrounding sea turtle nesting sites.  相似文献   
2.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
3.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
4.
White‐sand forests are patchily distributed ecosystems covering just 5% of Amazonia that host many specialist species of birds not found elsewhere, and these forests are threatened due to their small size and human exploitation of sand for construction projects. As a result, many species of birds that are white‐sand specialists are at risk of extinction, and immediate conservation action is paramount for their survival. Our objective was to evaluate current survey methods and determine the relative effect of the size of patches of these forests on the presence or absence of white‐sand specialists. Using point counts and autonomous recorders, we surveyed avian assemblages occupying patches of white‐sand forest in the Peruvian Amazon in April 2018. Overall, we detected 126 species, including 21 white‐sand forest specialists. We detected significantly more species of birds per survey point with autonomous recorders than point counts. We also found a negative relationship between avian species richness and distance from the edge of patches of white‐sand forest, but a significant, positive relationship when only counting white‐sand specialists. Although we detected more species with autonomous recorders, point counts were more effective for detecting canopy‐dwelling passerines. Therefore, we recommend that investigators conducting surveys for rare and patchily distributed species in the tropics use a mixed‐method approach that incorporates both autonomous recorders and visual observation. Finally, our results suggest that conserving large, continuous patches of white‐sand forest may increase the likelihood of survival of species of birds that are white‐sand specialists.  相似文献   
5.
The photon flux autocorrelation function of a fluorescent label attached to a bacterial motor shaft is calculated for the case in which the bacterial motor is considered to be actively but idly rotating. It is shown that even when the fluorescent label has a very short lifetime, fluorescence correlation spectroscopy should provide a useful tool for determining the rate of revolution of the bacterial motor under various solution conditions.  相似文献   
6.
7.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
8.
《Cell》2021,184(22):5670-5685.e23
  1. Download : Download high-res image (175KB)
  2. Download : Download full-size image
  相似文献   
9.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
10.
A simple method is described for picomole determinations of fatty acid metal salts. Fatty acid salts are directly labeled with 4-bromomethyl-7-methoxycoumarin in the presence of excess ethylenediaminetetraacetic acid tripotassium salt without any solvent extractions. The fluorescence derivatives of fatty acids are separated by reverse-phase high-performance liquid chromatography followed by fluorometric detection. The response of each fatty acid (C8-C18) calcium salt is linear from 1 to 50 micrograms/ml of samples. The detection limit is about 7 pmol. Good recoveries are obtained for the calcium salts of myrystic acid and soap (C8-C18, C18:1,2). The new method is successfully applied to the study on biodegradation of fatty acids in river water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号