首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1989篇
  免费   171篇
  国内免费   59篇
  2024年   2篇
  2023年   24篇
  2022年   35篇
  2021年   48篇
  2020年   67篇
  2019年   95篇
  2018年   76篇
  2017年   66篇
  2016年   77篇
  2015年   74篇
  2014年   98篇
  2013年   197篇
  2012年   72篇
  2011年   48篇
  2010年   49篇
  2009年   87篇
  2008年   96篇
  2007年   93篇
  2006年   72篇
  2005年   75篇
  2004年   74篇
  2003年   55篇
  2002年   64篇
  2001年   50篇
  2000年   37篇
  1999年   33篇
  1998年   44篇
  1997年   35篇
  1996年   37篇
  1995年   39篇
  1994年   29篇
  1993年   32篇
  1992年   26篇
  1991年   37篇
  1990年   19篇
  1989年   14篇
  1988年   14篇
  1987年   15篇
  1986年   11篇
  1985年   17篇
  1984年   17篇
  1983年   14篇
  1982年   16篇
  1981年   11篇
  1980年   9篇
  1979年   5篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
排序方式: 共有2219条查询结果,搜索用时 578 毫秒
1.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
2.
《Developmental cell》2021,56(16):2329-2347.e6
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
3.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
4.
In patients suffering from Parkinson's disease (PD), we analyzed correlations between the parameters of contingent negative variation (CNV) and data of variational pulsometry (according to the measurements of R-R ECG intervals). Studies were carried out on 35 patients (group PD), 49 to 74 years old, with the stage of disease of 1.5 to 3.0 according to the Hoehn-Yahr international classification. In the course of CNV recording (i.e., in the state of a certain functional loading), we observed significant negative correlations between the integral magnitude (area) of this potential and indices of variational pulsometry (RMSSD, SDNN, C. var, and HF) that characterize the intensity of parasympathetic (respiratory) influences on the cardiovascular system. In the control group, such correlations were absent. We found significant correlations between the autonomic balance, CNV magnitude, and stage of PD reflecting the level of generalization of the pathological process. In the subgroup of patients with the PD stage 1.5 to 2.0, significant changes in the mean values of indices of parasympathetic influences during recording of the CNV were not observed, while in another subgroup (the PD stage 2.5 to 3.0), these values increased significantly (P < 0.05 and P < 0.01). If the estimates of the PD stage were low, the CNV area demonstrated greater values (P < 0.01). The disturbance of coordination of muscle-to-muscle interactions in the PD group is, probably, an important factor responsible for parasympathetic dysregulation and suppression of the CNV generation. We found positive correlation between the intensity of parasympathetic influences in the course of CNV recording and the level of postural disorders (r = 0.37, P < 0.05). On the contrary, the CNV magnitude demonstrated a negative correlation with the intensity of these disorders (r = −0.36, P < 0.05), as well as with the level of postural instability (r = −0.55, P < 0.001). We hypothesize that alterations of the autonomic balance and the activity of those cerebral structures, which are responsible for the motor readiness, result, to a significant extent, from weakening of the activity of the noradrenergic system due to degenerative processes developing in cells of the locus coeruleus. The impairment of the latter structure, together with degeneration of neurons of the substantia nigra and a decrease in the level of nigro-striatal dopamine, underlies the pathomorphological pattern of PD. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 242–253, May–June, 2008.  相似文献   
5.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   
6.
Changes in water status, membrane permeability, ethylene production and levels of abscisic acid (ABA) were measured during senescence of cut carnation flowers ( Dianthus caryophyllus L. cv. White Sim) in order to clarify the temporal sequence of physiological events during this post-harvest period. Ethylene production and ABA content of the petal tissue rose essentially in parallel during natural senescence and after treatment of young flowers with exogenous ethylene, indicating that their syntheses are not widely separated in time. However, solute leakage, reflecting membrane deterioration, was apparent well before the natural rise in ethylene and ABA had begun. In addition, there were marked changes in water status of the tissue, including losses in water potential (ψw), and turgor (ψp), that preceded the rise in ABA and ethylene. As senescence progressed, ψw continued to decline, but ψp returned to normal levels. These temporal relationships were less well resolved when senescence of young flowers was induced by treatment with ethylene, presumably because the time-scale had been shortened. Thus changes in membrane permeability and an associated water stress in petal tissue appear to be earlier symptoms of flower senescence than the rises in ABA or ethylene. These observations support the contention that the climacteric-like rise in ethylene production is not the initial or primary event of senescence and that the rise in ABA titre may simply be a response to changes in water status.  相似文献   
7.
Photoexcitation of flavin analogs generates the lowest triplet state (via intersystem crossing from the first excited singlet state) in the nanosecond time domain and with high quantum efficiency. The triplet, being a strong oxidant, can abstract a hydrogen atom (or an electron) from a reduced donor in a diffusion-controlled reaction. If the donor is a redox protein, the oxidation process can be used to initiate an electron transfer sequence involving either intramolecular or intermolecular reactions. If the donor is an organic compound such as EDTA, the neutral flavin semiquinone will be produced by H atom abstraction; this is a strong reductant and can subsequently transfer a hydrogen atom (or an electron) to an oxidized redox protein, thereby again initiating a sequence of intramolecular or intermolecular processes. If flavin photoexcitation is accomplished using a pulsed laser light source, the initiation of these protein electron transfer reactions can be made to occur in the nanosecond to microsecond time domain, and the sequence of events can be followed by time-resolved spectrophotometry to obtain rate constants and thus mechanistic information. The present paper describes this technology, and selected examples of its use in the investigation of redox protein mechanisms are given.  相似文献   
8.
Studies were conducted to compare N mineralization rates in salt-amended nonsaline soils to naturally-occurring saline soils. NaCl, CaCl2, and Na2SO4 were added to nonsaline soils at rates that produced electrical conductivities of the saturation extracts (ECe) of 5, 10, 15, and 20 dS m−1. Saline soils with similar properties were leached to the same ECc levels. N mineralization in the Chino soil was inhibited by salt addition, particularly with sodium and calcium chlorides. In the Domino soil there was some inhibition of N mineralization with the chloride salts, but enhancement with Na2SO4 was observed. Nitrification in both soils was more sensitive to salt addition than ammonification. N mineralization occurred more slowly in both leached saline soils compared to the salt-amended soils. Leached saline soils often accumulated greater amounts of inorganic N compared to their native saline counterparts, particularly with the 5 dS m−1 Chino soil (native, 44 dS m−1) and with the 5, 10, 15 and 20 dS m−1 Domino soils (native, 32 dS m−1). Kinetic parameters were estimated by the linear least squares (LLS) and the nonlinear least squares (NLLS) methods. Generally, the LLS transformation estimated greater values of potentially mineralizable N (No) and lower rate constants (k). With the NLLS equation, No values for the leached saline soils were usually lower, and k values usually higher than in the salt-amended soils. The nonsaline controls generally had the highest No and lowest k estimates. Average LLS rate constants for the salt-amended and leached saline soils were 0.055 and 0.083 for the Chino, and 0.104 and 0.137 week−1, respectively, for the Domino soils. With the NLLS equation, average k values for the salt-amended and leached saline soils were 0.087 and 0.089 for the Chino, and 0.181 and 0.387 week−1, respectively, for the Domino soils. These results suggest that N mineralization rates obtained in salt-amended nonsaline soils may not be representative of those in naturally-occurring saline soils.  相似文献   
9.
Summary Physical parameters of membrane bilayers were studied for their effect on the binding of hematoporphyrin derivative (Hpd), which is used as a sensitizer in photodynamic therapy of cancerous tissues. The purpose of this study was to clarify which parameters were relevant, under physiological conditions, to the selectivity of Hpd binding to cancer cells. Fluorescence spectroscopy was used to measure the relative partitioning of the dye between the lipid and aqueous media. Increasing the microviscosity of the liposomes' membranes by various bilayer additives results in a strong reduction of Hpd binding, to an extent independent of the specific additive. The effect of temperature near the physiological value as well as the effect of cross membrane potential are small. Surface potential does not affect the binding constant, indicating that the binding species does not carry a net electric charge.  相似文献   
10.
We have recently reported the presence of an electroneutral (Na + K + 2 Cl) cotransport mechanism that is bumetanide-sensitive and maintains Cli above its electrochemical equilibrium in cultured chick heart cells. In steady state, (Na + K + 2 Cl) cotransport is inwardly directed and so contributes to the Na influx that must be counterbalanced by the activity of the Na/K pump to maintain Nai homeostasis. We now show that manipulating (Na + K + 2 Cl) cotransport by restoring Clo to a Cl-free solution indirectly influences Na/K pump activity because the bumetanide-sensitive recovery of a infNa supi to its control level and the accompanying hyperpolarization could be blocked by 10–4M ouabain. In another protocol, when the Na/K pump was reactivated by restoring Ko (from 0.5 mM to 5.4 mM) and removing ouabain, the recovery of aNa was attenuated by 10–4M bumetanide. The relatively slow rate of ouabain dissociation coupled with the activation of Na influx by (Na + K + 2 Cl) cotransport clearly establishes the interaction of these transport mechanisms in regulating Nai. Although (Na + K + 2 Cl) cotransport is electroneutral, secondary consequences of its activity can indirectly affect the electrophysiological properties of cardiac cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号