首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4309篇
  免费   213篇
  国内免费   126篇
  2024年   11篇
  2023年   37篇
  2022年   50篇
  2021年   58篇
  2020年   97篇
  2019年   95篇
  2018年   109篇
  2017年   80篇
  2016年   79篇
  2015年   103篇
  2014年   158篇
  2013年   286篇
  2012年   133篇
  2011年   146篇
  2010年   131篇
  2009年   182篇
  2008年   168篇
  2007年   192篇
  2006年   206篇
  2005年   211篇
  2004年   178篇
  2003年   174篇
  2002年   165篇
  2001年   136篇
  2000年   110篇
  1999年   104篇
  1998年   102篇
  1997年   83篇
  1996年   95篇
  1995年   79篇
  1994年   94篇
  1993年   89篇
  1992年   72篇
  1991年   65篇
  1990年   56篇
  1989年   60篇
  1988年   60篇
  1987年   48篇
  1986年   36篇
  1985年   37篇
  1984年   39篇
  1983年   30篇
  1982年   43篇
  1981年   36篇
  1980年   31篇
  1979年   23篇
  1978年   15篇
  1977年   17篇
  1976年   8篇
  1973年   14篇
排序方式: 共有4648条查询结果,搜索用时 31 毫秒
1.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
2.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
3.
4.
In this study, 18 partly commercially available samples of rock salt from Austria, Germany, Pakistan, Poland, Switzerland, and Ukraine were investigated with respect to their content of trace elements using instrumental neutron activation analysis. Elements detected were Al, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, and Zn, some of them only in individual cases. An estimation of the bioavailability of these trace elements was performed by dissolving an equivalent of the sodium chloride samples in diluted hydrochloric acid (simulating stomach acid), filtering off the insoluble components, and analyzing the evaporated filtrate. It could be shown that in most cases bioactive trace elements like Fe can be found in rock salt in the form of almost insoluble compounds and are therefore not significantly bioavailable, whereas thorium, for example, was partly bioavailable in two cases. A significant contribution to the recommended daily intake of metal trace elements by using rock salt for nutrition can be excluded.  相似文献   
5.
The unfolding at pH 8 of chicken cardiac aquometmyoglobin was examined as a function of temperature and concentration of guanidinium chloride using the two-state model. The isothermal unfolding data at 25°C were fitted to Tanford's transfer model and the binding model of Aune and Tanford. The estimates obtained for ΔGD) were virtually identical, viz., 8.3 ±0.3 kcal mol?1. The chicken metmyoglobin is thus some 5.3 kcal mol?1 less stable than that of sperm whale metmyoglobin. The unfolding parameters α and Δn were decreased 20% from those of mammalian myoglobins thus far examined, suggesting nonidentity of native conformations. The apparent enthalpy change on unfolding was dependent on both temperature and denaturant concentration. The decreases in the isothermal unfolding parameters from those of sperm whale are principally assigned to three of the 46 sequence changes.  相似文献   
6.
Summary 1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 × 10–5 M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i.2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition.3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine.4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K+-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca2+-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl, 1.85 × 10–5 M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.  相似文献   
7.
《Fungal biology》2020,124(2):83-90
Latterly, the upsurge in use of antifungal drugs has brought about the emergence of several drug-resistance strains, making it skeptical to continue relying on current therapeutic regime. In the necessity of resistance-free antifungal agent, flavonoids presented possibilities of replacing existing drugs, displaying antifungal activity against pathogenic fungi. Among them, quercetin, one of the most representative flavonoids, exhibited antifungal activity against Candida albicans. To inspect the further understanding regarding quercetin, the antifungal mode of action of quercetin was investigated. In the initial step, the apoptosis was monitored after quercetin treatment. Moreover, intracellular levels of Mg2+ was assessed and was determined that Mg2+ increase occurred under the influence of quercetin. In addition, several features of mitochondrial dysfunction were monitored. Mitochondrial dysfunction triggers decrease in mitochondrial redox levels and leads to disruption in mitochondrial antioxidant system. Increased intracellular ROS and decreased intracellular redox levels were also displayed, indicating the occurrence of overall disruption in antioxidant systems. Sequentially, DNA fragmentation was observed and this DNA damage in turn induces apoptosis. In analyses, hexaamminecobalt(III) chloride (Cohex) was applied to inhibit Mg2+ transport between cytosol and mitochondria. Cohex attenuated the effects induced by quercetin, which demonstrates that the presence of Mg2+ is essential in quercetin-induced apoptosis.  相似文献   
8.
The antimicrobial efficacy of zinc (Zn) salts (sulfate and acetate) against Streptococcus mutans (S. mutans) present in the oral cavity was tested in this study. The substantivity of Zn salts was assessed by determining the concentration of Zn in whole, unstimulated saliva and by measuring the magnitude of suppression of salivary S. mutans, 2h after rinsing. The concentration of Zn was measured by atomic absorption spectrometry (AAS) with electrothermal atomization (ET AAS) in saliva sampled before (basal) and 24h after mouth rinsing with different concentrations of Zn (0.1%, 0.5% and 1%) administrated as sulfate and acetate. The estimation of Zn levels in samples collected 30, 60, 90 and 120 min after rinsing was carried out by AAS with flame atomization (FAAS). Immediately after rinsing, the concentration of Zn in saliva sharply increased with respect to the baseline values (0.055+/-0.017 mg/L), followed by a sustained decrease, probably due to clearance of salivary flow or swallowing during sampling. A significant reduction (>87%) in the total mean S. mutans counts was found 2h after rinsing either with sulfate or acetate solutions, as evidence of the high substantivity and effectiveness of the Zn salts tested. A statistically significant inverse relationship (p<0.001 and the Pearson correlation coefficients between -34% and -50%) was found between Zn levels and the respective pH values measured in the samples collected 60 and 120 min after rinsing, sustaining the theory of bacterial glycolysis inhibition.  相似文献   
9.
It is important to develop efficient and economically feasible pretreatment methods for lignocellulosic biomass, to increase annual biomass production. A number of pretreatment methods were introduced to promote subsequent enzymatic hydrolysis of biomass for green energy processes. Pretreatment with steam explosion removes the only xylan at high severity but increases lignin content. In this study, corn stover soaked in choline chloride solution before the steam explosion is economically feasible as it reduced cost. Enzymatic hydrolysis of de-lignified corn stover is enhanced by combinatorial pretreatments of steam explosion and choline chloride. Corn stover pretreated with choline chloride at the ratio of 1:2.2 (w/w), 1.0 MPa, 184 °C, for 15 min efficiently expelled 84.7% lignin and 78.9% xylan. The residual solid comprised of 74.59% glucan and 7.51% xylan was changed to 84.2% glucose and 78.3% xylose with enzyme stacking of 10FPU/g. This single-step pretreatment had ∼ 4.5 and 6.4 times higher glucose yield than SE-pretreated and untreated corn stover, respectively. Furthermore, SEM, XRD and FTIR indicated the porosity, crystalline changes, methoxy bond-cleavage respectively due to the lignin and hemicellulose expulsion. Thus, the released acetic acid during this process introduced this novel strategy, which significantly builds the viability of biomass in short pretreatment time.  相似文献   
10.
Ablation of rat myenteric plexus with benzalkonium chloride has provided a model of intestinal aganglionosis, but the degenerative responses are not well understood. We examined the effects of this detergent on neurons and glia, including expression of c-Myc, c-Jun, JunB, and c-Fos, and on immunocytes in the guinea-pig ileum. Benzalkonium chloride (0.1%) or saline was applied to the serosal surface of distal ileum. Tissues were analyzed 2, 3, or 7 days later and compared with cyclosporine-treated and untreated animals. More than 90% of myenteric neurons were destroyed in ileal segments 3–7 days after benzalkonium-chloride treatment. Glia withdrew processes from around neurons after 2 days and were mostly gone after 3 days. Neuronal c-Myc began to disappear while c-Fos, c-Jun, and JunB were evident in some neuronal nuclei after 2 or 3 days. After 3 days, widespread apoptosis was evident in the myenteric plexus. Populations of T cells, B cells, and macrophage-like cells in untreated and saline-treated myenteric plexuses were substantially increased 3 and 7 days after benzalkonium-chloride treatment. Cyclosporine delayed significant neuronal loss. We conclude that a variety of degenerative mechanisms may be active in this model, including an immune response which may actively contribute to tissue destruction. Received: 13 September 1996 / Accepted: 20 January 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号