首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5365篇
  免费   595篇
  国内免费   1361篇
  7321篇
  2024年   34篇
  2023年   119篇
  2022年   171篇
  2021年   227篇
  2020年   270篇
  2019年   302篇
  2018年   245篇
  2017年   253篇
  2016年   268篇
  2015年   258篇
  2014年   281篇
  2013年   371篇
  2012年   193篇
  2011年   255篇
  2010年   194篇
  2009年   273篇
  2008年   249篇
  2007年   275篇
  2006年   256篇
  2005年   274篇
  2004年   196篇
  2003年   200篇
  2002年   198篇
  2001年   195篇
  2000年   134篇
  1999年   152篇
  1998年   123篇
  1997年   127篇
  1996年   106篇
  1995年   109篇
  1994年   97篇
  1993年   117篇
  1992年   102篇
  1991年   84篇
  1990年   85篇
  1989年   70篇
  1988年   65篇
  1987年   46篇
  1986年   43篇
  1985年   51篇
  1984年   38篇
  1983年   29篇
  1982年   49篇
  1981年   47篇
  1980年   28篇
  1979年   19篇
  1978年   8篇
  1977年   12篇
  1976年   6篇
  1958年   4篇
排序方式: 共有7321条查询结果,搜索用时 1 毫秒
1.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
2.
Myoglobin (Mb) is the classic vertebrate oxygen-binding protein present in aerobic striated muscles. It functions principally in oxygen delivery and provides muscle with its characteristic red colour. Members of the Antarctic icefish family (Channichthyidae) are widely thought to be extraordinary for lacking cardiac Mb expression, a fact that has been attributed to their low metabolic rate and unusual evolutionary history. Here, we report that cardiac Mb deficit, associated with pale heart colour, has evolved repeatedly during teleost evolution. This trait affects both gill- and air-breathing species from temperate to tropical habitats across a full range of salinities. Cardiac Mb deficit results from total pseudogenization in three-spined stickleback and is associated with a massive reduction in mRNA level in two species that evidently retain functional Mb. The results suggest that near or complete absence of Mb-assisted oxygen delivery to heart muscle is a common facet of teleost biodiversity, even affecting lineages with notable oxygen demands. We suggest that Mb deficit may affect how different teleost species deal with increased tissue oxygen demands arising under climate change.  相似文献   
3.
4.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
5.
Due to the fact that the flood data series of small drainage basins is relatively short, available data are often not sufficient for flood risk analysis. This presents the problem of risk analysis using very small data samples. One method that can be applied is to regard the available small samples as fuzzy information and optimize them using information diffusion technology to yield analytical results with greater reliability. In this article a risk analysis method based on information diffusion theory is applied to create a new flood risk analysis model. Application of the model is illustrated taking the Jinhuajiang and Qujiang drainage basins as examples. This is a new attempt at applying information diffusion theory in flood risk analysis. Computations based on this analytical flood risk model can yield an estimated flood damage value that is relatively accurate. This study indicates that the aforementioned model exhibits fairly stable analytical results, even when using a small set of sample data. The results also indicate that information diffusion technology is highly capable of extracting useful information and therefore improves system recognition accuracy. This method can be easily applied and the analytical results produced are easy to understand. Results are accurate enough to act as a guide in disaster situations.  相似文献   
6.
7.
Abstract In the field, adult males of the grasshopper Phymateus morbillosus are able to fly for up to 1 min and cover up to c. 100 m, whereas females, although fully winged, are apparently unable to get airborne. Morphometric data indicate that the males are lighter, have longer wings, a higher ratio of flight muscles to body mass, and a lower wing load value than females. It was investigated whether this inability of females to fly is related to fuel storage, flight muscle enzymatic design and/or the presence and quantitative capacity of the endocrine system to mobilize fuels. In both sexes, readily available potential energy substrates are present in the haemolymph in similar concentrations, and the amount of glycogen in flight muscles and fat bodies does not differ significantly between males and females. Mass-specific activities of the enzymes GAPDH (glycolysis), HOAD (fatty acid oxidation) and MDH (citric acid cycle) in flight muscles are significantly lower in females compared with males, and mitochondria are less abundant in the flight muscles of females. There is no significant difference between the ability of the two sexes to oxidize various important substrates. Both sexes contain three adipokinetic peptides in their corpora cardiaca; the amount of each peptide in female grasshoppers is higher than in males.
Thus, despite some differences listed above, both sexes appear to have sufficient substrates and the necessary endocrine complement to engage in flight. It seems more likely, from the morphometric data above, that the chief reason for flightlessness is that P. morbillosus females cannot produce sufficient lift for flight; alternatively, the neuronal functioning associated with the flight muscles may be impaired in females.  相似文献   
8.
9.
Muscle fine structure reflects ecotype in two nototheniids   总被引:3,自引:0,他引:3  
The fine structure of swimming (pectoral) and myotomal (axial) skeletal muscle and myocardium of two species of Antarctic nototheniid fishes were studied by electron microscopy, comparing the cryopelagic Pagothenia borchgrevinki and the benthic Trematomus bernacchii . Mean fibre size varied by a factor of four among muscles within each species and may have reflected the locomotory power available, being larger in pectoral oxidative (red) and axial glycolytic (white) muscle of P. borchgrevinki . Both species use labriform locomotion, and the more active P. borchgrevinki had a greater capillary supply, expressed as a capillary to fibre ratio, than T. bernacchii to both red (3·48 ± 0·36 v . 1·63 ± 0·14, mean ±  s . e .; P  < 0·01) and white (2·70 ± 0·20 v . 1·53 ± 0·18, mean ±  s . e .; P  < 0·01) regions of the pectoral musculature. The greater aerobic scope of P. borchgrevinki was strikingly demonstrated in the higher mitochondrial content of all skeletal muscle types sampled, and the ventricular myocardium (0·269 ± 0·011 v . 0·255 ± 0·012 mean ±  s . e .; P  < 0·05). Minor differences were found in other elements of fibre composition, with the exception of a five‐fold greater lipid content in pectoral red fibres of P. borchgrevinki (0·074 ± 0·014 mean ±  s . e .) v . T. bernacchii (0·010 ± 0·003; P  < 0·05). Differences in muscle fine structure among species clearly reflected differences in their ecotype.  相似文献   
10.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号