首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6953篇
  免费   608篇
  国内免费   1302篇
  8863篇
  2024年   20篇
  2023年   117篇
  2022年   178篇
  2021年   229篇
  2020年   268篇
  2019年   312篇
  2018年   292篇
  2017年   239篇
  2016年   237篇
  2015年   234篇
  2014年   345篇
  2013年   452篇
  2012年   282篇
  2011年   358篇
  2010年   251篇
  2009年   319篇
  2008年   322篇
  2007年   386篇
  2006年   335篇
  2005年   338篇
  2004年   256篇
  2003年   271篇
  2002年   283篇
  2001年   218篇
  2000年   191篇
  1999年   184篇
  1998年   138篇
  1997年   181篇
  1996年   143篇
  1995年   128篇
  1994年   121篇
  1993年   153篇
  1992年   129篇
  1991年   92篇
  1990年   99篇
  1989年   101篇
  1988年   94篇
  1987年   66篇
  1986年   56篇
  1985年   59篇
  1984年   72篇
  1983年   50篇
  1982年   56篇
  1981年   61篇
  1980年   36篇
  1979年   29篇
  1978年   16篇
  1977年   20篇
  1975年   11篇
  1973年   10篇
排序方式: 共有8863条查询结果,搜索用时 0 毫秒
1.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
2.
Concentration factor and biological half-life of 54Mn were determined in three species representing an ecologically and economically important food chain. Green algae (Chlorella spp.), Daphnia magna and yellow perch (Perca flavescens) were exposed to 54Mn in water and assayed for 54Mn uptake. Steady state concentration factors computed from the laboratory data for algae, Daphnia and perch were 4230, 17 000 and 11, respectively. Respective biological half-lives were 1.6, 1.2 and 8.3 days.  相似文献   
3.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
4.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
5.
6.
7.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   
8.
Summary The VA-infected wheat varieties showed an increase of total (Lozano var.) and reducing (Lozano and Pane vars.) sugars in their root extracts. However, no clear relationship between sugar concentration in the root and VA mycorrhizal infection level could be established.In addition, the VA mycorrhizal hosts sorghum, alfalfa, sunflower and maize, and non-host radish and cabbage plants were tested for sugar content in their root extracts after fifteen days of growth. Sugars present in the root extracts of these plants did not seem to be a decisive factor in plant susceptibility to VA infection.  相似文献   
9.
Summary The influence of total nitrification to nitrate or partial nitrification to nitrite on the soil organic nitrogen status was examined. NH 4 +15N was added to the soil in the absence and the presence of NaClO3, respectively nitrapyrin. The first chemical inhibits only nitrate formation, the second inhibits total nitrification. The accumulation of nitrite nitrogen in the soil at levels up to 5 mg kg–1 increased the loss of nitrogen. Yet, it did not increase the binding of mineral nitrogen into soil organic matter, relative to the control soil. The data suggest that the biochemistry of the nitrite formation process, rather than the levels of nitrite ions formed, are of primary importance in the role of nitrification mediated nitrosation of soil organic matter.  相似文献   
10.
During periods of high atmospheric humidity, twigs of Tamarix aphylla (L.) Karst. become covered by an alkaline solution. The pH of that solution fluctuates between 8.0 – 8.5 in the dark and 10.5 during the light hours. Such a solution, produced by the glands, constitutes an efficient trap for atmospheric CO2. Upon the periodic drop in pH, much of the preabsorbed carbon may gradually be released from the solution. This enriches the immediate surroundings of the twigs with CO2 for prolonged periods of time. The expected concentrations of CO2, at the boundary layer between the atmosphere and the surfaces of the twigs, are over 1 000 ppm. As net photosynthesis of T. aphylla reaches maximal rates only at CO2 concentrations of above 500 ppm, the plants may benefit from this extra source of carbon and may exploit it for maximal assimilation during the early morning hours. Thus, the "salt glands'of Tamarix , which are liable for the production of the alkaline recretum, may serve a triple purpose: (a) removal of excess salts out of the twigs, (b) provision of a cover of hygroscopic solutes that moistens the twigs and shortens the duration of transpiration, and (c) providing the plants with an environment enriched in CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号