首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1700篇
  免费   159篇
  国内免费   96篇
  2024年   3篇
  2023年   29篇
  2022年   23篇
  2021年   38篇
  2020年   64篇
  2019年   59篇
  2018年   54篇
  2017年   61篇
  2016年   59篇
  2015年   43篇
  2014年   68篇
  2013年   124篇
  2012年   57篇
  2011年   76篇
  2010年   53篇
  2009年   104篇
  2008年   96篇
  2007年   100篇
  2006年   98篇
  2005年   77篇
  2004年   89篇
  2003年   70篇
  2002年   81篇
  2001年   55篇
  2000年   36篇
  1999年   32篇
  1998年   28篇
  1997年   29篇
  1996年   14篇
  1995年   25篇
  1994年   24篇
  1993年   24篇
  1992年   24篇
  1991年   17篇
  1990年   8篇
  1989年   18篇
  1988年   7篇
  1987年   13篇
  1986年   12篇
  1985年   14篇
  1984年   11篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1955条查询结果,搜索用时 716 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
1. The ability to achieve optimal camouflage varies between microhabitats in heterogeneous environments, potentially restricting individuals to a single habitat or imposing a compromise on crypsis to match several habitats. However, animals may exhibit morphological and behavioural attributes that enhance crypsis in different habitats. 2. We used an undescribed fish species, Galaxias‘nebula’, to investigate two objectives. First, we examined two potential methods of enhancing crypsis: change in colour pattern and selection of a suitable background. Second, we characterised the colour pattern of this unstudied fish and assessed its capacity for crypsis. 3. No background selection was apparent but the area of dark pigment expressed varied between backgrounds, which may negate the requirement to be choosy about habitats. The capacity to change colour and selection of a background that maximises crypsis are most likely separate, non‐mutually exclusive strategies. 4. Galaxias‘nebula’ exhibits polymorphic, non‐interchangeable colour patterns that have elements of both background pattern matching and disruptive colouration. This, coupled with habitat characteristics, suggests a combination of generalist and specialist strategies of habitat use. The fish’s camouflage strategy and air‐breathing ability may be key to survival under increasing pressure from habitat degradation and invasive predators.  相似文献   
3.
1. Ship‐induced waves can affect the physical characteristics of lake and river shorelines, and laboratory studies have shown effects on littoral invertebrates. Here, we explored whether these effects could be observed under field conditions along a natural lake shore affected by wave sequences (trains) produced by boats. 2. Individuals of five invertebrate species (Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeselii, Laccophilus hyalinus) were exposed to waves with increasing shear stress in five habitats differing in structural complexity. 3. Detachment of invertebrates increased with increasing shear stress and was best modelled using sigmoid response curves. Habitat structural complexity mitigated the effects of shear stress, and detachment rate was influenced more by habitat type than by species. A threshold (90% of the individual invertebrates unaffected) stress level of 0.64 N m?2 was found for a structurally complex reed habitat, compared to 0.37 N m?2 for a simple sand habitat. 4. Shear stress associated with wave trains created by recreational boating at a distance of 35 m from the shore and at a speed of 11 km h?1 resulted in 45% detachment of littoral invertebrates. Decreasing the boat‐to‐shore distance to 20 m increased wave shear stress by 30% and invertebrate detachments up to 75%. 5. Disturbance of littoral habitats and invertebrate assemblages are widespread in inland waters used for recreational and/or commercial navigation. Our findings show that the integrity of littoral zones of navigable surface waters could be much improved by implementing management measures such as physically protecting complex habitats with dense reed belts and tree roots, and reducing boat speeds and increasing their minimum shoreline distance.  相似文献   
4.
5.
Densities of red mullet Mullus surmuletus have declined since 1996 at Cap Martin, Alpes‐Maritimes, France, following colonization by Caulerpa taxifolia . Foraging M. surmuletus were rarely observed over C. taxifolia or the seagrass Posidonia oceanica , but were observed over bare sand and endemic macroalgae. Within colonized sites (where the mean cover of C. taxifolia was 30–100%), fish were concentrated on areas with low cover of C. taxifolia (<21%). A difference in the frequency of observations of foraging groups (17%) was observed between sites with and without C. taxifolia . The observed patterns were probably due to a physical barrier to foraging that is presented by meadows of C. taxifolia . Changes to habitat structure that occur when the substratum is colonized by C. taxifolia influence the accessibility to benthic food resources, and consequently the foraging activities of fish that feed on benthic invertebrates. The decline in density of M. surmuletus at Cap Martin could be the result of fish emigration from colonized sites (unfavourable to the species) to uncolonized sites.  相似文献   
6.
The partially inbred Danish (Skive) strain of mice exhibits a form of liver alcohol dehydrogenase (ADH) which differs in electrophoretic mobility from that of all other inbred mouse strains thus far examined, e.g., C57BL/10, DBA/2J, and BALB/c. In order to compare the catalytic and molecular properties of the variant and normal enzyme forms, they were purified to homogeneity by ion-exchange and affinity chromatography. Tryptic peptides of reduced and carboxymethylated subunits of the normal and variant ADH forms were mapped by thin-layer two-dimensional electrophoresis and chromatography and by reversed-phase high-performance liquid chromatography. A unique nonapeptide in the Danish mouse liver ADH which did not appear in enzymes from C57BL/10, DBA/2J, or BALB/c mice was identified by both methods. Amino acid sequencing of this peptide revealed that the Arg residue at position 124, as predicted from the cDNA sequence of ADH in DBA/2J mice, has been replaced by Leu in the Danish variant. The Leu for Arg substitution in the variant form appears to account for its decreased cathodic mobility with electrophoresis in starch gels at pH 7.2. The K m and V max of ADH from the Danish strain for three primary alcohols and three aldehydes were similar in value to those of ADH from the C57BL/10, DBA/2J, and BALB/c strains. Based on the X-ray structure of horse liver ADH, position 124 is on the solvent-exposed surface of the catalytic domain. The finding that the kinetic constants are similar for the normal and variant forms is consistent with the observation that this residue is not in the active site and that there is no known role for it in the ADH catalytic mechanism.This work was supported by NIAAA Grant AA-04307.  相似文献   
7.
Bioassays of different complexity were compared with respect to their capability to predict the environmental impact of the herbicide atrazine in aquatic systems. Acute toxicity tests with Daphnia did not yield meaningful results. Sublethal tests with Daphnia (feeding inhibition, reduction of growth and reproduction) were more sensitive, but effective concentrations of atrazine were still rather high (2 mg/L). A relatively complicated artificial food chain system that incorporated direct and indirect effects on Daphnia yielded significant reduction of daphnid population growth at 0.1 mg/L. Enclosure experiments with natural communities were by far the most sensitive tools. Community responses could be measured at concentrations as low as 1 µg/L and 0.1 µg atrazine/L. At the lowest concentration, however, communities recovered after three weeks. We conclude that in complex systems indirect effects can be more important than direct effects, so that, contrary to the conditions in simple tests, non-target organisms may be the better indicators of herbicide stress to natural communities.  相似文献   
8.
Protein phosphorylation is an important mechanism in the modulation of voltage-dependent ionic channels. In squid giant axons, the potassium delayed rectifier channel is modulated by an ATP-mediated phosphorylation mechanism, producing important changes in amplitude and kinetics of the outward current. The characteristics and biophysical basis for the phosphorylation effects have been extensively studied in this preparation using macroscopic, single-channel and gating current experiments. Phosphorylation produces a shift in the voltage dependence of all voltage-dependent parameters including open probability, slow inactivation, first latency, and gating charge transferred. The locus of the effect seems to be located in a fast 20 pS channel, with characteristics of delayed rectifier, but at least another channel is phosphorylated under our experimental conditions. These results are interpreted quantitatively with a mechanistic model that explains all the data. In this model the shift in voltage dependence is produced by electrostatic interactions between the transferred phosphate and the voltage sensor of the channel.  相似文献   
9.
An alternative procedure to obtain the parameters of Monod's growth model in batch culture is presented. It is based on the integral kinetic analysis methodology, employs a one-dimensional Golden Section search optimization method and is implemented on a spread-sheet programme. The procedure is discussed in detail and is illustrated by analysis of batch substrate consumption data by an aerobic bacterial consortium.  相似文献   
10.
Partially purified preparations of the hepatic glucokinase from C3H/He and C58 inbred mice have been used to explore the molecular basis for the observed twofold difference in activity between the strains. The single codominant gene that appears to regulate activity, the alleles of which are designated Gka and Gkb, respectively, for the two strains, could represent a structural gene change. This now seems unlikely because the mouse enzyme, although showing small differences from rat glucokinase, appeared to be identical in the two strains with respect to thermal stability, electrophoretic mobility in agarose gels, and kinetic properties such as the apparent K m values for MgATP2– and glucose and the unique cooperative interaction with the latter substrate. The enzymes also reacted identically in a range of immunological tests (double-diffusion, immunoelectrophoresis, immune precipitation and immune inhibition assays) and ELISA immune inhibition assays indicated that the twofold difference in activity was due to a similar difference in antigenically active enzyme. Genetic control over the physiologically significant regulation of enzyme amount is therefore probable.This work has been supported in part by a grant from the British Diabetic Association and a Training Studentship to PAJ from the Medical Research Council (U.K.).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号