首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5281篇
  免费   551篇
  国内免费   1029篇
  6861篇
  2024年   21篇
  2023年   107篇
  2022年   142篇
  2021年   175篇
  2020年   221篇
  2019年   219篇
  2018年   228篇
  2017年   195篇
  2016年   202篇
  2015年   232篇
  2014年   264篇
  2013年   348篇
  2012年   196篇
  2011年   265篇
  2010年   198篇
  2009年   247篇
  2008年   237篇
  2007年   298篇
  2006年   247篇
  2005年   298篇
  2004年   205篇
  2003年   200篇
  2002年   221篇
  2001年   199篇
  2000年   143篇
  1999年   160篇
  1998年   124篇
  1997年   122篇
  1996年   117篇
  1995年   113篇
  1994年   107篇
  1993年   112篇
  1992年   97篇
  1991年   65篇
  1990年   90篇
  1989年   69篇
  1988年   71篇
  1987年   49篇
  1986年   38篇
  1985年   43篇
  1984年   40篇
  1983年   15篇
  1982年   38篇
  1981年   26篇
  1980年   13篇
  1979年   14篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1958年   4篇
排序方式: 共有6861条查询结果,搜索用时 15 毫秒
1.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
2.
Morphologically intermediate plants between Weigela hortensis (Siebold & Zucc.) K.Koch and W. maximowiczii (S.Moore) Rehder have been found in Miyagi and Yamagata Pref., northern Japan. Quantitative character analyses of flowers, pollen stainability and molecular analyses indicated that the intermediate plants were hybrids of those two species. This is the first record of an intersectional hybrid with W. maximowiczii (sect. Weigelastrum ) as one of the parent species. The morphological differences among hybrid individuals imply the possibility of backcrosses or formation of second or later generations of hybrids, although those may be quite rare because of a low frequency of viable pollen grains. Causes of hybridization between two distantly-related species in Weigela are discussed. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 369–380.  相似文献   
3.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
4.
5.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   
6.
7.
To investigate the role of species‐specific litter decomposability in determining plant community structure, we constructed a theoretical model of the codevelopmental dynamics of soil and vegetation. This model incorporates feedback between vegetation and soil. Vegetation changes the nutrient conditions of soil by affecting mineralization processes; soil, in turn, has an impact on plant community structure. The model shows that species‐level traits (decomposability, reproductive and competitive abilities) determine whether litter feedback effects are positive or negative. The feedback determines community‐level properties, such as species composition and community stability against invasion. The model predicts that positive feedback may generate multiple alternative steady states of the plant community, which differ in species richness or community composition. In such cases, the realized state is determined by initial abundance of co‐occurring species. Further, the model shows that the importance of species‐level traits depends on environmental conditions such as system fertility.  相似文献   
8.
For any element which is incorporated into biomass, the biogeochemical cycle of that element in a given ecosystem will be coupled to that of any other element similarly incorporated. The mutual interaction of two such cycles is examined using a simple model in which each cycle is constrained into four compartments. In each cycle the assimilation rate (primary productivity) is related in a non-linear fashion to the two nutrients and to biomass. The interactions are represented by combining a hyperbolic dependence for each nutrient (involving a "Michaelis constant") with a logistic equation governing the dependence of rate on biomass (involving a "carrying capacity"). The response of the model to perturbation (e.g. mobilization of an abiotic reserve) is strongly governed by the values assigned to these constants. The coupled cycles can exhibit positive feed-back with anomalous responses of the steady state and time-dependent solutions may exhibit complex oscillatory behaviour. Both the steady-state sensitivity and the kinetic behaviour of such coupled systems are simplified if the range of atomic ratios permitted by the assimilation process is restricted. It will therefore be of importance to determine under what conditions the assimilation rates for different elements are governed by mass-action effects (Liebig's Law) or by stoichiometric constraints (Redfield ratios).  相似文献   
9.
In a mature mixed subalpine stand ofTsuga mertensiana andAbies amabilis, significantly higher Al levels were found in foliage, branch and root tissues ofT. mertensiana.Tsuga mertensiana had significant increases in Al, Ca and Mn levels with increasing foliage age. In current foliage,T. mertensiana had lower levels of Ca, similar levels of Mg and P, and higher levels of Mn thanA. amabilis. Both tree species had Cu and Fe present at higher levels in branch than foliage tissues. Fine roots had the highest concentrations of Al, Fe and Cu but the lowest Ca and Mn concentrations of all tissues analyzed. In the roots of both species, phloem tissues always had significantly higher Al levels than xylem. Fine roots (< 1 and 1–2 mm) ofT. mertensiana had higher Al levels than were found inA. amabilis. Roots greater than 2 mm in diameter exhibited no significant differences in Al levels in phloem or xylem tissue betweenA. amabilis andT. mertensiana. The two species show a clear difference in their ability to accumulate specific elements from the soil.  相似文献   
10.
Near a hen house (50–600 m), vitality ofPinus sylvestris, N-, P-, K-, Ca-, Mg-contents of the needles, N-, Mg-, K-, Ca- and Al-contents in soil extracts and NH3/NH 4 + -contents of the air were determined. Damage symptoms occurred when N-immissions hit the canopy directly. In contrast no visible decline of the above ground plant could be observed if N was mainly deposited on the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号