首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99108篇
  免费   6583篇
  国内免费   6450篇
  2023年   1198篇
  2022年   1767篇
  2021年   2493篇
  2020年   2380篇
  2019年   3128篇
  2018年   3148篇
  2017年   2327篇
  2016年   2435篇
  2015年   3097篇
  2014年   5122篇
  2013年   6657篇
  2012年   3726篇
  2011年   5038篇
  2010年   4066篇
  2009年   4905篇
  2008年   5272篇
  2007年   5429篇
  2006年   4890篇
  2005年   4601篇
  2004年   4060篇
  2003年   3719篇
  2002年   3315篇
  2001年   2205篇
  2000年   1963篇
  1999年   1976篇
  1998年   2002篇
  1997年   1675篇
  1996年   1379篇
  1995年   1462篇
  1994年   1395篇
  1993年   1193篇
  1992年   1064篇
  1991年   851篇
  1990年   682篇
  1989年   643篇
  1988年   604篇
  1987年   557篇
  1986年   454篇
  1985年   1050篇
  1984年   1414篇
  1983年   893篇
  1982年   1103篇
  1981年   802篇
  1980年   791篇
  1979年   721篇
  1978年   526篇
  1977年   432篇
  1976年   373篇
  1975年   341篇
  1974年   316篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
4.
The vitamin D binding protein (Gc) and posttransferrin-2 (Ptf-2) phenotypes have been determined in a number of Belgian cattle breeds. A very slow migrating variant of the Gc protein — Gc C — has been found in White and Red East Flemish breed. This variant was absent from the other breeds studied. This slow variant was identified as a vitamin D binding protein by autoradiography. The Gc C protein was shown to be controlled by a codominant autosomal allele Gc C at the Gclocus. The Gc C protein is probably identical with a fraction previously described in buffalo and an Italian cattle breed. The allele frequencies for the Gc and Pft-2 systems are reported for several Belgian breeds of cattle.  相似文献   
5.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
6.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
7.
We encountered a fourth case of honey allergy in Japan. We characterized and identified the IgE-binding proteins in honey using the serum of a honey-allergenic patient. Immunoblot analysis revealed that IgE in the patient serum specifically bound to four proteins in each honey sample. At least three of these IgE-binding proteins were N-linked glycoproteins. To identify the 60-kDa IgE-binding protein in dandelion honey, the N-terminal sequences of the fragmented protein were analyzed, revealing the protein to be major royal jelly protein 1 (MRJP 1). Three IgE-binding proteins removed of N-linked oligosaccharide showed a large reduction in IgE-binding activity as compared with the intact protein. This suggests that the carbohydrates in the IgE-binding proteins are a major epitope for patient IgE.  相似文献   
8.
W D Davies  J Pittard  B E Davidson 《Gene》1985,33(3):323-331
Defective transducing phages carrying aroG, the structural gene for phenylalanine (phe)-inhibitable phospho-2-keto-heptonate aldolase (EC 4.1.2.15; previously known as 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase[phe]), have been isolated, and DNA from two of these phages has been used to construct a restriction map of the region from att lambda to aroG. A 7.6-kb PstI-HindIII fragment from one of these phages was cloned into pBR322 and shown to contain aroG. The location of aroG within the 7.6 kb was established by subcloning and Tn3 transpositional mutagenesis. A fragment carrying the aroG promoter and operator has been cloned into a high copy number promoter-cloning vector (pMC489), and the resulting aroGpo-LacZ' (alpha) fusion subcloned in a low copy number vector. Strains with this fusion on the low copy number vector exhibit negative regulation of beta-galactosidase expression by both phenylalanine and tryptophan and positive regulation by tyrosine in a tyrR+ background.  相似文献   
9.
10.
The nicotinic acid hydroxylase from Clostridium barkeri is a selenoenzyme, as evidenced by the copurification of selenium with enzyme activity. This conclusion is supported by data showing a 23-fold increase in nicotinic acid hydroxylase activity when C. barkeri was cultured in media supplemented with selenium. A labile, selenium-containing compound was released from the native protein by treatment with either chaotropic agents and heat or by heating alone. A stable selenium compound was formed when the enzyme was alkylated prior to denaturation. This compound had the same chromatographic properties as dialykyl selenide in a number of systems. The formation of dialkyl selenide upon alkylation is not consistent with the selenium moiety being selenocysteine. Thus, nicotinic acid hydroxylase represents a new type of selenoenzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号